Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

Let Q and R be two points on the line
x+12=y+23=z12\frac{x+1}{2}=\frac{y+2}{3}=\frac{z−1}{2} at a distance 26\sqrt{26}
from the point P(4, 2, 7). Then the square of the area of the triangle PQR is _______ .

Answer

The correct answer is 153
L:x+12=y+23=z12L: \frac{x+1}{2}=\frac{y+2}{3}=\frac{z−1}{2}

Fig

Let T(2 t – 1, 3 t – 2, 2 t + 1)
PTQR∵ PT⊥QR
∴ 2(2 t – 5) + 3 (3 t – 4) + 2 (2 t – 6) = 0
17 t = 34
t = 2
So T(3, 4, 5)
PT=1+4+4=3∴ PT=\sqrt{1+4+4}=3
QT=269=17∴ QT=\sqrt{26−9}=\sqrt{17}
∴Area of PQR=12×217×3=317△PQR=\frac{1}{2}×2\sqrt{17}×3=3\sqrt{17}
∴Square of ar(PQR)=153.ar(△PQR)=153.