Solveeit Logo

Question

Mathematics Question on 3D Geometry

Let Q and R be the feet of perpendiculars from the point P(a, a, a) on the lines x = y, z = 1 and x = –y, z = –1 respectively. If ∠QPR is a right angle, then 12a2 is equal to _____

Answer

The coordinates of QQ are given by:

x=y,z=1Q(r,r,1)x = y, \quad z = 1 \quad \Rightarrow \quad Q(r, r, 1)

The coordinates of RR are given by:

x=y,z=1R(k,k,1)x = -y, \quad z = -1 \quad \Rightarrow \quad R(k, -k, -1)

Calculate vector PQ\overrightarrow{PQ}:

PQ=(ar)i^+(ar)j^+(a1)k^\overrightarrow{PQ} = (a - r)\hat{i} + (a - r)\hat{j} + (a - 1)\hat{k}

Similarly, calculate vector PR\overrightarrow{PR}:

PR=(ak)i^+(a+k)j^+(a+1)k^\overrightarrow{PR} = (a - k)\hat{i} + (a + k)\hat{j} + (a + 1)\hat{k}

Since PQPR\overrightarrow{PQ} \perp \overrightarrow{PR}:

(ar)(ak)+(ar)(a+k)+(a1)(a+1)=0(a - r)(a - k) + (a - r)(a + k) + (a - 1)(a + 1) = 0

Simplifying:

a=1or1a = 1 \quad \text{or} \quad -1

Hence:

12a2=1212a^2 = 12