Solveeit Logo

Question

Question: Let p(x) = $x^5 + x^2 + 1$ have roots $x_1, x_2, x_3, x_4$ and $x_5$, $g(x) = x^2 -2$, then the valu...

Let p(x) = x5+x2+1x^5 + x^2 + 1 have roots x1,x2,x3,x4x_1, x_2, x_3, x_4 and x5x_5, g(x)=x22g(x) = x^2 -2, then the value of g(x1)g(x2)g(x3)g(x4)g(x5)30g(x1x2x3x4x5)g(x_1)g(x_2)g(x_3)g(x_4)g(x_5) - 30g(x_1x_2x_3x_4x_5), is 62

Answer

53

Explanation

Solution

Let p(x)=x5+x2+1p(x) = x^5 + x^2 + 1 with roots x1,x2,x3,x4,x5x_1, x_2, x_3, x_4, x_5. Let g(x)=x22g(x) = x^2 - 2. We need to find the value of the expression E=g(x1)g(x2)g(x3)g(x4)g(x5)30g(x1x2x3x4x5)E = g(x_1)g(x_2)g(x_3)g(x_4)g(x_5) - 30g(x_1x_2x_3x_4x_5).

First, let's find the product of the roots x1x2x3x4x5x_1x_2x_3x_4x_5. For a polynomial anxn+an1xn1++a1x+a0a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, the product of the roots is (1)na0an(-1)^n \frac{a_0}{a_n}. For p(x)=x5+0x4+0x3+x2+0x+1p(x) = x^5 + 0x^4 + 0x^3 + x^2 + 0x + 1, the degree is n=5n=5, the constant term is a0=1a_0=1, and the leading coefficient is a5=1a_5=1. The product of the roots is x1x2x3x4x5=(1)511=1x_1x_2x_3x_4x_5 = (-1)^5 \frac{1}{1} = -1.

Now, let's evaluate the second term of the expression EE: 30g(x1x2x3x4x5)30g(x_1x_2x_3x_4x_5). This is 30g(1)30g(-1). g(1)=(1)22=12=1g(-1) = (-1)^2 - 2 = 1 - 2 = -1. So, the second term is 30(1)=3030(-1) = -30.

Next, let's evaluate the first term: g(x1)g(x2)g(x3)g(x4)g(x5)=i=15g(xi)g(x_1)g(x_2)g(x_3)g(x_4)g(x_5) = \prod_{i=1}^5 g(x_i). g(xi)=xi22g(x_i) = x_i^2 - 2. So the first term is i=15(xi22)\prod_{i=1}^5 (x_i^2 - 2). Let yi=xi2y_i = x_i^2. We need to evaluate i=15(yi2)\prod_{i=1}^5 (y_i - 2).

The roots xix_i satisfy p(xi)=xi5+xi2+1=0p(x_i) = x_i^5 + x_i^2 + 1 = 0. xi5=(xi2+1)x_i^5 = -(x_i^2 + 1). Squaring both sides, we get (xi5)2=((xi2+1))2(x_i^5)^2 = (-(x_i^2 + 1))^2, which simplifies to xi10=(xi2+1)2=xi4+2xi2+1x_i^{10} = (x_i^2 + 1)^2 = x_i^4 + 2x_i^2 + 1. Let y=x2y = x^2. Then yi=xi2y_i = x_i^2. Substituting xi2=yix_i^2 = y_i and xi10=(xi2)5=yi5x_i^{10} = (x_i^2)^5 = y_i^5, xi4=(xi2)2=yi2x_i^4 = (x_i^2)^2 = y_i^2, the equation becomes yi5=yi2+2yi+1y_i^5 = y_i^2 + 2y_i + 1. So, yiy_i is a root of the polynomial q(y)=y5y22y1q(y) = y^5 - y^2 - 2y - 1. The roots of q(y)q(y) are y1=x12,y2=x22,y3=x32,y4=x42,y5=x52y_1 = x_1^2, y_2 = x_2^2, y_3 = x_3^2, y_4 = x_4^2, y_5 = x_5^2. Thus, q(y)=(yy1)(yy2)(yy3)(yy4)(yy5)q(y) = (y-y_1)(y-y_2)(y-y_3)(y-y_4)(y-y_5).

The first term we need to evaluate is i=15(yi2)=(y12)(y22)(y32)(y42)(y52)\prod_{i=1}^5 (y_i - 2) = (y_1-2)(y_2-2)(y_3-2)(y_4-2)(y_5-2). This is equal to q(2)q(2). q(2)=(2)5(2)22(2)1=32441=329=23q(2) = (2)^5 - (2)^2 - 2(2) - 1 = 32 - 4 - 4 - 1 = 32 - 9 = 23. So, the first term is 23.

Now we can calculate the value of the expression EE: E=(first term)(second term)E = (\text{first term}) - (\text{second term}) E=23(30)=23+30=53E = 23 - (-30) = 23 + 30 = 53.