Solveeit Logo

Question

Question: Let P(x) denotes the probability of the occurrence of event x. Then all those points (x, y) = (P(1)...

Let P(x) denotes the probability of the occurrence of event x.

Then all those points (x, y) = (P(1), P(2)), in a plane which

satisfy the conditions,

P (A Č B) ³18\frac { 1 } { 8 }£ P (A Ē B) £ 38\frac { 3 } { 8 } implies

A

P (1) + P (2) <118\frac { 11 } { 8 }

B

P (1) + P (2) > 118\frac { 11 } { 8 }

C

78\frac { 7 } { 8 }£ P (1) + P (2) £118\frac { 11 } { 8 }

D

None of these

Answer

78\frac { 7 } { 8 }£ P (1) + P (2) £118\frac { 11 } { 8 }

Explanation

Solution

P (A Č B) ³ 38\frac { 3 } { 8 }.

Ž P (1) + P (2) – P (A Ē B) ³ 34\frac { 3 } { 4 }

Ž P (1) + P (2) ³ 34\frac { 3 } { 4 } + P (A Ē B) = 34\frac { 3 } { 4 } + 18\frac { 1 } { 8 } = 78\frac { 7 } { 8 }

We know that P (A Č B) £ 1

P (1) + P (2) £ 1 + P (A Ē B) £ 1 + 38\frac { 3 } { 8 } = Ž x + y £ 118\frac { 11 } { 8 }

Ž 78\frac { 7 } { 8 } £ x + y £ 118\frac { 11 } { 8 }

Also 0 £ P (1) £ 1, 0 £ P (2) £ 1 .

Hence (3) is the correct answer