Solveeit Logo

Question

Question: Let P(x) be a polynomial of least degree whose graph has three points of inflection (–1, – 1), (1, 1...

Let P(x) be a polynomial of least degree whose graph has three points of inflection (–1, – 1), (1, 1) and a point with abscissa 0 at which the curve is inclined to the axis of abscissa at an angle of 60ŗ. Then 01\int_{0}^{1}{}P(x) dx equals to

A

33+414\frac{3\sqrt{3} + 4}{14}

B

337\frac{3\sqrt{3}}{7}

C

3+714\frac{\sqrt{3} + \sqrt{7}}{14}

D

3+27\frac{\sqrt{3} + 2}{7}

Answer

33+414\frac{3\sqrt{3} + 4}{14}

Explanation

Solution

Required function is a polynomial, the abscissa of the points of inflection can only be among the roots of the second derivative

p''(x) = ax (x – 1) (x + 1) = a(x3 – x)

at the point x = 0, p'(0) = tan 60ŗ = 3\sqrt{3}

p'(x) = 0x\int_{0}^{x}{}p''(x) dx + 3\sqrt{3} = a(x44x22)\left( \frac{x^{4}}{4} - \frac{x^{2}}{2} \right)+3\sqrt{3}

Since p(1) = 1, we get

p(x) = 1x\int_{1}^{x}{}p'(x) dx + 1

= a(x520x36+760)\left( \frac{x^{5}}{20} - \frac{x^{3}}{6} + \frac{7}{60} \right) +3\sqrt{3} (x – 1) + 1

p(– 1) = – 1, so a = 60(31)7\frac{60(\sqrt{3} - 1)}{7}

1x\int_{1}^{x}{}p(x) dx = 317\frac{\sqrt{3} - 1}{7} (3x5 – 10x3) + x3\sqrt{3}]dx

= 317\frac { \sqrt { 3 } - 1 } { 7 } (x6252x4)\left( \frac{x^{6}}{2} - \frac{5}{2}x^{4} \right) +  301\left. \ \sqrt{3} \right|_{0}^{1}

= 317\frac { \sqrt { 3 } - 1 } { 7 } (1252)\left( \frac{1}{2} - \frac{5}{2} \right) + 32\frac{\sqrt{3}}{2} = 3314\frac{3\sqrt{3}}{14} + 27\frac{2}{7}