Solveeit Logo

Question

Question: Let *PS* be the median of the triangle with vertices \(P ( 2,2 ) , Q ( 6 , - 1 )\) and *R*(7, 3). Th...

Let PS be the median of the triangle with vertices P(2,2),Q(6,1)P ( 2,2 ) , Q ( 6 , - 1 ) and R(7, 3). The equation of the line passing through (1, – 1) and parallel to PS is

A

2x9y7=02 x - 9 y - 7 = 0

B

2x9y11=02 x - 9 y - 11 = 0

C

2x+9y11=02 x + 9 y - 11 = 0

D

2x+9y+7=02 x + 9 y + 7 = 0

Answer

2x+9y+7=02 x + 9 y + 7 = 0

Explanation

Solution

S = mid point of QR=(6+72,1+32)=(132,1)Q R = \left( \frac { 6 + 7 } { 2 } , \frac { - 1 + 3 } { 2 } \right) = \left( \frac { 13 } { 2 } , 1 \right)

\therefore Slope (m) of PS = 212132=29\frac { 2 - 1 } { 2 - \frac { 13 } { 2 } } = \frac { - 2 } { 9 };

y+1=29(x1)y + 1 = \frac { - 2 } { 9 } ( x - 1 )2x+9y+7=02 x + 9 y + 7 = 0