Solveeit Logo

Question

Question: Let \(P(r) = \frac{Q}{\pi R^{4}}r\) be the charge density distribution for a solid sphere of radius ...

Let P(r)=QπR4rP(r) = \frac{Q}{\pi R^{4}}r be the charge density distribution for a solid sphere of radius R and total charge Q. For a point ‘p’ inside the sphere at distance r1 from the centre of the sphere, the magnitude of electric field is –

A

0

B

Q4π0r12\frac{Q}{4\pi \in_{0}r_{1}^{2}}

C

Qr124π0R4\frac{Qr_{1}^{2}}{4\pi \in_{0}R^{4}}

D

Qr123π0R4\frac{Qr_{1}^{2}}{3\pi \in_{0}R^{4}}

Answer

Qr124π0R4\frac{Qr_{1}^{2}}{4\pi \in_{0}R^{4}}

Explanation

Solution

P(r) =

From Gauss law

\oint E.ds = = ρVdVε0\frac { \int \rho \mathrm { VdV } } { \varepsilon _ { 0 } } =

E.4pr12 = QπR44πr144\frac { \mathrm { Q } } { \pi \mathrm { R } ^ { 4 } } 4 \pi \frac { \mathrm { r } _ { 1 } ^ { 4 } } { 4 } e0

E = Qr124πε0R4\frac { \mathrm { Qr } _ { 1 } ^ { 2 } } { 4 \pi \varepsilon _ { 0 } \mathrm { R } ^ { 4 } }