Solveeit Logo

Question

Mathematics Question on 3D Geometry

Let PQR be a triangle with R (-1,4, 2). Suppose M(2, 1, 2) is the mid point of PQ. The distance of the centroid of PQR\triangle PQR from the point of intersection of the linex20=y2=z+31\frac{x-2}{0}=\frac{y}{2}=\frac{z+3}{-1} and x11=y+33=z+11\frac{x-1}{1}=\frac{y+3}{-3}=\frac{z+1}{1} is

A

69

B

9

C

69\sqrt{69}

D

99\sqrt{99}

Answer

69\sqrt{69}

Explanation

Solution

Step 1: Find the Centroid GG of PQR\triangle PQR

Since M(2,1,2)M(2, 1, 2) is the midpoint of PQPQ and R(1,4,2)R(-1, 4, 2) is the third vertex, the centroid GG divides MRMR in the ratio 1:21 : 2. Using the section formula to find GG:

G=(1(1)+221+2,14+211+2,12+221+2)=(1,2,2)G = \left(\frac{1 \cdot (-1) + 2 \cdot 2}{1 + 2}, \frac{1 \cdot 4 + 2 \cdot 1}{1 + 2}, \frac{1 \cdot 2 + 2 \cdot 2}{1 + 2}\right) = (1, 2, 2)

Step 2: Find the Point of Intersection AA of the Given Lines

Solving the parametric equations of the lines, we find the point of intersection AA to be:

A=(2,6,0)A = (2, -6, 0)

Step 3: Calculate the Distance AGAG

Using the distance formula between points G(1,2,2)G(1, 2, 2) and A(2,6,0)A(2, -6, 0):

AG=(21)2+(62)2+(02)2=1+64+4=69AG = \sqrt{(2 - 1)^2 + (-6 - 2)^2 + (0 - 2)^2} = \sqrt{1 + 64 + 4} = \sqrt{69}

So, the correct answer is: 69\sqrt{69}