Solveeit Logo

Question

Mathematics Question on Straight lines

Let PQRPQR be a right angled isosceles triangle, right angled at P(2,1)P (2,1). If the equation of the line QRQR is 2x+y=32x + y = 3, then the equation representing the pair of lines PQ and PR is

A

3x23y2+8xy+20x+10y+25=03x^2 - 3 y^2 + 8 xy + 20 x + 10 y + 25 = 0

B

3x23y2+8xy20x10y+25=03x^2 - 3 y^2 + 8 xy - 20 x - 10 y + 25 = 0

C

3x23y2+8xy+10x+15y+25=03x^2 - 3 y^2 + 8 xy + 10 x + 15 y + 25 = 0

D

3x23y28xy+10x+15y+25=03x^2 - 3 y^2 - 8 xy + 10 x + 15 y + 25 = 0

Answer

3x23y2+8xy20x10y+25=03x^2 - 3 y^2 + 8 xy - 20 x - 10 y + 25 = 0

Explanation

Solution

Let S be the mid-point of QR and given \triangle PQR is an isosceles.
Therefore, PS \perp QR and S is mid-point of hypotenuse,
\therefore S is equidistant from P, Q, R.
PS=QS=RS\therefore PS = QS = RS
SInce, P=90 \angle P = 90^\circ
and Q=R\angle Q = \angle R
But P+Q+R=180\angle P + \angle Q + \angle R = 180^\circ
90+Q+R=180\therefore 90^\circ + \angle Q + \angle R = 180^\circ
\Rightarrow Q=R=45 \angle Q = \angle R = 45^\circ
Now, slope of QR is - 2 .
But QRPSQR \perp PS
\therefore Slope of PS is 1/2.
Let m be the slope of P
tan(±45)=m1/21m(1/2)\therefore \tan ( \pm 45^\circ) = \frac{ m - 1/ 2 }{ 1 - m \, ( - 1 / 2) }
±12m12+m\Rightarrow \pm 1 \frac{ 2m - 1}{ 2 + m}
m=3,1/3\Rightarrow m = 3, - 1 / 3
\therefore Equations of PQ and PR are y1=3(x2)y - 1 = 3 (x - 2 ) and y1=13(x2)y - 1 = - \frac{1}{3} \, (x - 2)
or 3 ( y - 1) + (x - 2) = 0
Therefore, joint equation of PQ and PR is
[ 3 (x - 2) - ( y - 1) ] [ (x - 2) + 3 ( y - 1) ] = 0
3(x2)23(y1)2+8(x2)(y1)=0\Rightarrow 3 ( x - 2 )^2 - 3 ( y - 1)^2 + 8 (x - 2) \, ( y - 1) = 0
3x23y2+8xy20x10y+25=0\Rightarrow 3x^2 - 3y^2 + 8 xy - 20 x - 10 y + 25 = 0