Solveeit Logo

Question

Question: Let p,q be integers and let a, ẞ be the roots of the equation, x²-x-1=0 where a ≠ β. For n = 0,1,2,...

Let p,q be integers and let a, ẞ be the roots of the equation, x²-x-1=0 where a ≠ β. For n = 0,1,2, let a = pa" + qß". Fact: If a and b are rational numbers and a+b√5 = 0, then a=0=b. If a = 28, then q + p/2 =

Answer

6

Explanation

Solution

The roots of x2x1=0x^2-x-1=0 are α=1+52\alpha = \frac{1+\sqrt{5}}{2} and β=152\beta = \frac{1-\sqrt{5}}{2}. The sequence an=pαn+qβna_n = p\alpha^n + q\beta^n satisfies an+2=an+1+ana_{n+2} = a_{n+1} + a_n. a0=p+qa_0 = p+q. a1=pα+qβ=p+q2+pq25a_1 = p\alpha + q\beta = \frac{p+q}{2} + \frac{p-q}{2}\sqrt{5}. a4=7(p+q)2+3(pq)25a_4 = \frac{7(p+q)}{2} + \frac{3(p-q)}{2}\sqrt{5}. Given a4=28a_4 = 28. Equating rational and irrational parts: 7(p+q)2=28    p+q=8\frac{7(p+q)}{2} = 28 \implies p+q = 8. 3(pq)2=0    p=q\frac{3(p-q)}{2} = 0 \implies p=q. Solving p+q=8p+q=8 and p=qp=q gives p=4,q=4p=4, q=4. Therefore, q+p/2=4+4/2=6q + p/2 = 4 + 4/2 = 6.