Solveeit Logo

Question

Mathematics Question on Parabola

Let PQ be a focal chord of the parabola y 2 = 4 x such that it subtends an angle of π/2 at the point (3, 0). Let the line segment PQ be also a focal chord of the ellipse E:x2a2+y2b2=1,a2>b2.E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,a^2>b^2. If e is the eccentricity of the ellipse E , then the value of 1e2\frac{1}{e^2} is equal to

A

1+21+\sqrt2

B

3+223+2\sqrt2

C

1+231+2\sqrt3

D

4+534+5\sqrt3

Answer

3+223+2\sqrt2

Explanation

Solution

The correct option is(B): 3+223+2\sqrt2

Let PQ be a focal chord of the parabola y2 = 4x such that it subtends an angle of π/2 at the point 3, 0.

PQR=π2∠PQR=\frac{\pi}{2}

P ≡ (1, 2) & Q(1, –2)

∴ for ellipse

1a2+4b2=1\frac{1}{a^2}+\frac{4}{b^2}=1

and ae = 1

⇒ (5 – e 2)e 2 = 1 – e 2

e 4 – 6 e 2 + 1 = 0

1e2=3+22⇒\frac{1}{e^2}=3+2\sqrt2