Solveeit Logo

Question

Mathematics Question on Conic sections

Let PQPQ be a double ordinate of the parabola, y2=4xy^2= - 4x, where P lies in the second quadrant. If R divides PQPQ in the ratio 2:12 : 1, then the locus of R is :

A

9y2=4x9y^2 = 4x

B

9y2=4x9y^2 = - 4x

C

3y2=2x3y^2 = 2x

D

3y2=2x3y^2 = - 2x

Answer

9y2=4x9y^2 = - 4x

Explanation

Solution

LetP(at12,2at1),Let P\left(-at^{2}_{1}, 2at_{1}\right),
Q(at12,2at1)Q\left(-at^{2}_{1}, -2at_{1}\right) and R(h,k)R\left(h, k\right)
By using section formula, we have
h=at12,k=2at13h=-at^{2}_{1}, k=\frac{-2at_{1}}{3}
k=2at13k=-\frac{2at_{1}}{3}
3k=2at1\Rightarrow 3k=-2at_{1}
9k2=4a2t12=4a(h)\Rightarrow 9k^{2}=4a^{2}\,t^{2}_{1}=4a\left(-h\right)
9k2=4ah\Rightarrow 9k^{2}=-4ah
9k2=4h\Rightarrow 9k^{2}=-4h
9y2=4x\Rightarrow 9y^{2}=-4x