Solveeit Logo

Question

Question: Let PQ be a double ordinate of hyperbola \(\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}}\) = 1. If O be ...

Let PQ be a double ordinate of hyperbola x2a2y2b2\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1. If O be the centre of the hyperbola and OPQ is an equilateral triangle then the eccentricity e is –

A

>3\sqrt{3}

B

> 2

C

> 2/3\sqrt{3}

D

None of these

Answer

> 2/3\sqrt{3}

Explanation

Solution

P be (a, b) then PQ = 2b

OP = α2+β2\sqrt{\alpha^{2} + \beta^{2}}

Since OPQ is an equilateral triangle

OP = PQ

a2 + b2 = 4 b2 = a2 = 3b2 Ž a = ±3\sqrt{3}b

(a, b) is situated on the hyperbola

x2a2y2b2\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1 α2a2β2b2\frac{\alpha^{2}}{a^{2}} - \frac{\beta^{2}}{b^{2}} = 1

3β2a2β2b2\frac{3\beta^{2}}{a^{2}} - \frac{\beta^{2}}{b^{2}} = 1 Ž 3a2\frac{3}{a^{2}}1b2\frac{1}{b^{2}}= 1β2\frac{1}{\beta^{2}} > 0

b2a2\frac{b^{2}}{a^{2}} > 1/3 Ž e2 – 1 > 1/3

e2 > 4/3 Ž e > 2/3\sqrt{3}