Solveeit Logo

Question

Question: Let PQ and RSbe tangents at the extremities of the diameter PR of a circle of radius r. If PS and RQ...

Let PQ and RSbe tangents at the extremities of the diameter PR of a circle of radius r. If PS and RQ intersect at a point X on the circumference of the circle, then 2r equals

A

PQ.RS\sqrt{PQ.RS}

B

PQ+RS2\frac{PQ + RS}{2}

C

2PQ.RSPQ+RS\frac{2PQ.RS}{PQ + RS}

D

PQ2+RS22\frac{\sqrt{PQ^{2} + RS^{2}}}{2}

Answer

PQ.RS\sqrt{PQ.RS}

Explanation

Solution

tanθ=PQPR=PQ2r\tan\theta = \frac{PQ}{PR} = \frac{PQ}{2r}

Also tan(π2θ)=RS2r\tan\left( \frac{\pi}{2} - \theta \right) = \frac{RS}{2r}

i.e. cotθ=RS2r\cot\theta = \frac{RS}{2r}

\therefore tanθ.cotθ=PQ.RS4r2\tan\theta.\cot\theta = \frac{PQ.RS}{4r^{2}}

4r2=PQ.RS2r=(PQ)(RS)\Rightarrow 4r^{2} = PQ.RS \Rightarrow 2r = \sqrt{(PQ)(RS)}