Solveeit Logo

Question

Question: Let positive real numbers \( x \) and \( y \) be such that \( 3x + 4y = 14 \) . The maximum value of...

Let positive real numbers xx and yy be such that 3x+4y=143x + 4y = 14 . The maximum value of x3y4{x^3}{y^4} is
(A) 10561056
(B) 128128
(C) 216216
(D) 432432

Explanation

Solution

First find the value of yy in terms of xx from the given equation. Then put the value of yy in x3y4{x^3}{y^4} . Then differentiate this term with respect to xx using differentiation results. Then equate it to 00 and find the value of xx . Again differentiate the term with respect to xx using differentiation results and then put the value of xx obtained. If the value obtained is less than 00 , then x3y4{x^3}{y^4} attains maximum at the value of xx obtained. Finally, put this value of xx in x3y4{x^3}{y^4} and find its maximum value.

Formula used: If f(x)f\left( x \right) and g(x)g\left( x \right) are differentiable functions and c is a constant.
dxndx=nxn1\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}
df(x)ndx=nf(x)n1ddxf(x)\dfrac{{df{{(x)}^n}}}{{dx}} = nf{(x)^{n - 1}}\dfrac{d}{{dx}}f(x)
d(c)dx=0\dfrac{{d\left( c \right)}}{{dx}} = 0
\dfrac{d}{{dx}}\left\\{ {cf\left( x \right)} \right\\} = c \times \dfrac{d}{{dx}}\left( {f\left( x \right)} \right)
ddx[f(x)g(x)]=f(x)ddxg(x)+g(x)ddxf(x)\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] = f\left( x \right)\dfrac{d}{{dx}}g\left( x \right) + g\left( x \right)\dfrac{d}{{dx}}f\left( x \right)
ddx[f(x)±g(x)]=ddxf(x)±ddxg(x)\dfrac{d}{{dx}}\left[ {f\left( x \right) \pm g\left( x \right)} \right] = \dfrac{d}{{dx}}f\left( x \right) \pm \dfrac{d}{{dx}}g\left( x \right)

Complete step-by-step solution:
It is given that positive real numbers xx and yy are such that 3x+4y=143x + 4y = 14 .
First find the value of yy in terms of xx from the given equation.
On simplification, we get
\Rightarrow y=143x4y = \dfrac{{14 - 3x}}{4} .
Let us consider SS be the maximum value of x3y4{x^3}{y^4} .
So, we can write it as S=x3y4S = {x^3}{y^4} .
On putting y=143x4y = \dfrac{{14 - 3x}}{4} in S=x3y4S = {x^3}{y^4}
S=x3(143x4)4S = {x^3}{\left( {\dfrac{{14 - 3x}}{4}} \right)^4}
On simplification, we get
S=1256x3(143x)4(1)\Rightarrow S = \dfrac{1}{{256}}{x^3}{\left( {14 - 3x} \right)^4} \ldots \ldots \left( 1 \right)
Differentiating this equation with respect to xx , we get
dSdx=ddx[1256x3(143x)4]\dfrac{{d{\text{S}}}}{{dx}} = \dfrac{d}{{dx}}\left[ {\dfrac{1}{{256}}{x^3}{{\left( {14 - 3x} \right)}^4}} \right]
Use the property \dfrac{d}{{dx}}\left\\{ {c \times f\left( x \right)} \right\\} = c \times \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) in above equation where f(x)f\left( x \right) is a differentiable function and c is a constant.
dSdx=1256ddx[x3(143x)4]\dfrac{{d{\text{S}}}}{{dx}} = \dfrac{1}{{256}}\dfrac{d}{{dx}}\left[ {{x^3}{{\left( {14 - 3x} \right)}^4}} \right]
Use the property ddx[f(x)g(x)]=f(x)ddxg(x)+g(x)ddxf(x)\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] = f\left( x \right)\dfrac{d}{{dx}}g\left( x \right) + g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) in above equation where f(x)f\left( x \right) and g(x)g\left( x \right) are differentiable functions.
dSdx=1256[x3ddx(143x)4+(143x)4ddxx3]\dfrac{{d{\text{S}}}}{{dx}} = \dfrac{1}{{256}}\left[ {{x^3}\dfrac{d}{{dx}}{{\left( {14 - 3x} \right)}^4} + {{\left( {14 - 3x} \right)}^4}\dfrac{d}{{dx}}{x^3}} \right]
Use the property df(x)ndx=nf(x)n1ddxf(x)\dfrac{{df{{(x)}^n}}}{{dx}} = nf{(x)^{n - 1}}\dfrac{d}{{dx}}f(x) and dxndx=nxn1\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}} in above equation where f(x)f\left( x \right) is a differentiable function.
dSdx=1256[x3×4(143x)3(3)+(143x)4×3x2]\dfrac{{d{\text{S}}}}{{dx}} = \dfrac{1}{{256}}\left[ {{x^3} \times 4{{\left( {14 - 3x} \right)}^3}\left( { - 3} \right) + {{\left( {14 - 3x} \right)}^4} \times 3{x^2}} \right]
On simplification, we get
dSdx=3256[x2(143x)44x3(143x)3]  (2)\dfrac{{d{\text{S}}}}{{dx}} = \dfrac{3}{{256}}\left[ {{x^2}{{\left( {14 - 3x} \right)}^4} - 4{x^3}{{\left( {14 - 3x} \right)}^3}} \right]\; \ldots \ldots \left( 2 \right)
Now to find the maximum value of x3y4{x^3}{y^4} , put dSdx=0\dfrac{{d{\text{S}}}}{{dx}} = 0 and find the value of xx
dSdx=0\dfrac{{d{\text{S}}}}{{dx}} = 0
So we can write it as,
3256[x2(143x)44x3(143x)3]=0\Rightarrow \dfrac{3}{{256}}\left[ {{x^2}{{\left( {14 - 3x} \right)}^4} - 4{x^3}{{\left( {14 - 3x} \right)}^3}} \right] = 0
Multiply both sides of the equation by 2563\dfrac{{256}}{3} , we get
x2(143x)44x3(143x)3=0\Rightarrow {x^2}{\left( {14 - 3x} \right)^4} - 4{x^3}{\left( {14 - 3x} \right)^3} = 0
Take x2(143x)3{x^2}{\left( {14 - 3x} \right)^3} common in above equation, we get
x2(143x)3[143x4x]=0\Rightarrow {x^2}{\left( {14 - 3x} \right)^3}\left[ {14 - 3x - 4x} \right] = 0
On adding the bracket term, we get
x2(143x)3[147x]=0\Rightarrow {x^2}{\left( {14 - 3x} \right)^3}\left[ {14 - 7x} \right] = 0
On simply we get the value,
x=0,143,2\Rightarrow x = 0,\dfrac{{14}}{3},2
Again differentiating (2) with respect to xx , we get
\Rightarrow \dfrac{{{d^2}{\text{S}}}}{{d{x^2}}} = \dfrac{d}{{dx}}\left\\{ {\dfrac{3}{{256}}\left[ {{x^2}{{\left( {14 - 3x} \right)}^4} - 4{x^3}{{\left( {14 - 3x} \right)}^3}} \right]} \right\\}
Use the property \dfrac{d}{{dx}}\left\\{ {c \times f\left( x \right)} \right\\} = c \times \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) in above equation where f(x)f\left( x \right) is a differentiable function and c is a constant.
d2Sdx2=3256ddx[x2(143x)44x3(143x)3]\Rightarrow \dfrac{{{d^2}{\text{S}}}}{{d{x^2}}} = \dfrac{3}{{256}}\dfrac{d}{{dx}}\left[ {{x^2}{{\left( {14 - 3x} \right)}^4} - 4{x^3}{{\left( {14 - 3x} \right)}^3}} \right]
Use the property ddx[f(x)g(x)]=f(x)ddxg(x)+g(x)ddxf(x)\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] = f\left( x \right)\dfrac{d}{{dx}}g\left( x \right) + g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) in above equation where f(x)f\left( x \right) and g(x)g\left( x \right) are differentiable functions.
d2Sdx2=3256[x2ddx(143x)4+(143x)4dx2dx4x3ddx(143x)34(143x)3dx3dx]\Rightarrow \dfrac{{{d^2}{\text{S}}}}{{d{x^2}}} = \dfrac{3}{{256}}\left[ {{x^2}\dfrac{d}{{dx}}{{\left( {14 - 3x} \right)}^4} + {{\left( {14 - 3x} \right)}^4}\dfrac{{d{x^2}}}{{dx}} - 4{x^3}\dfrac{d}{{dx}}{{\left( {14 - 3x} \right)}^3} - 4{{\left( {14 - 3x} \right)}^3}\dfrac{{d{x^3}}}{{dx}}} \right]
Use the property df(x)ndx=nf(x)n1ddxf(x)\dfrac{{df{{(x)}^n}}}{{dx}} = nf{(x)^{n - 1}}\dfrac{d}{{dx}}f(x) and dxndx=nxn1\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}} in above equation where f(x)f\left( x \right) is a differentiable function.
d2Sdx2=3256[x2×4(143x)3(3)+(143x)4(2x)4x3×2(143x)2(3)4(143x)3(3x2)]\Rightarrow \dfrac{{{d^2}{\text{S}}}}{{d{x^2}}} = \dfrac{3}{{256}}\left[ {{x^2} \times 4{{\left( {14 - 3x} \right)}^3}\left( { - 3} \right) + {{\left( {14 - 3x} \right)}^4}\left( {2x} \right) - 4{x^3} \times 2{{\left( {14 - 3x} \right)}^2}\left( { - 3} \right) - 4{{\left( {14 - 3x} \right)}^3}\left( {3{x^2}} \right)} \right]
On multiply the term and we get
d2Sdx2=3256[12x2(143x)3+2x(143x)4+24x3(143x)212x2(143x)3]\Rightarrow \dfrac{{{d^2}{\text{S}}}}{{d{x^2}}} = \dfrac{3}{{256}}\left[ { - 12{x^2}{{\left( {14 - 3x} \right)}^3} + 2x{{\left( {14 - 3x} \right)}^4} + 24{x^3}{{\left( {14 - 3x} \right)}^2} - 12{x^2}{{\left( {14 - 3x} \right)}^3}} \right]
On adding the same exponent term and we get,
d2Sdx2=3256[2x(143x)424x2(143x)3+24x3(143x)2]\Rightarrow \dfrac{{{d^2}{\text{S}}}}{{d{x^2}}} = \dfrac{3}{{256}}\left[ {2x{{\left( {14 - 3x} \right)}^4} - 24{x^2}{{\left( {14 - 3x} \right)}^3} + 24{x^3}{{\left( {14 - 3x} \right)}^2}} \right]
Put x=2x = 2 in the above equation and check whether the value is less than 00 or not.
(d2Sdx2)x=2=3256[2(2)(143(2))424(2)2(143(2))3+24(2)3(143(2))2]\Rightarrow {\left( {\dfrac{{{d^2}{\text{S}}}}{{d{x^2}}}} \right)_{x = 2}} = \dfrac{3}{{256}}\left[ {2\left( 2 \right){{\left( {14 - 3\left( 2 \right)} \right)}^4} - 24{{\left( 2 \right)}^2}{{\left( {14 - 3\left( 2 \right)} \right)}^3} + 24{{\left( 2 \right)}^3}{{\left( {14 - 3\left( 2 \right)} \right)}^2}} \right]
On multiply the term and we get
(d2Sdx2)x=2=3256[4×8424×4×83+24×8×82]\Rightarrow {\left( {\dfrac{{{d^2}{\text{S}}}}{{d{x^2}}}} \right)_{x = 2}} = \dfrac{3}{{256}}\left[ {4 \times {8^4} - 24 \times 4 \times {8^3} + 24 \times 8 \times {8^2}} \right]
Taking 83{8^3} as common and we get,
3×83256[4×824×4+24]\Rightarrow \dfrac{{3 \times {8^3}}}{{256}}\left[ {4 \times 8 - 24 \times 4 + 24} \right]
On multiply the term and square the numerator term we get,
3×512256[3296+24]\Rightarrow 3 \times \dfrac{{512}}{{256}}\left[ {32 - 96 + 24} \right]
On dividing and add the term we get
3×2[40]\Rightarrow 3 \times 2\left[ { - 40} \right]
On multiply and subtract the term and we get
6×(40)\Rightarrow 6 \times \left( { - 40} \right)
Let us multiply the term and we get
240\Rightarrow - 240
As, (d2Sdx2)x=2<0{\left( {\dfrac{{{d^2}{\text{S}}}}{{d{x^2}}}} \right)_{x = 2}} < 0, so x=2x = 2 is a point of local maxima.
i.e., SSattains maximum value at x=2x = 2 .
To find the maximum value ofSS, we have to find the value of SS at x=2x = 2 .
Put x=2x = 2 in equation (1)\left( 1 \right) and find the maximum value ofSS.
max S=1256(2)3(143(2))4{\text{max S}} = \dfrac{1}{{256}}{\left( 2 \right)^3}{\left( {14 - 3\left( 2 \right)} \right)^4}
On simplify the term and we get,
=8256×84= \dfrac{8}{{256}} \times {8^4}
Let us multiply the term and we get, f(x)f'(x)
=128= 128

Therefore, The maximum value of x3y4{x^3}{y^4} is (B)128\left( B \right)128 .

Note: Algorithm for determining extreme values of a function:
Steps for determining maxima and minima of f(x)f(x)
Step 1: Find
Step 2: Find f(x)f''(x) . Consider x=c1x = {c_1} .
If f(c1)<0f''({c_1}) < 0 , then x=c1x = {c_1} is called the local maximum.
If f(c1)>0f''({c_1}) > 0 , then x=c1x = {c_1} is called the local minimum.
If f(c1)=0f''({c_1}) = 0 , we must find f(x)f'''(x) and substitute in it c1{c_1} forxx
If f(x)0f'''(x) \ne 0 , then x=c1x = {c_1} is neither a point of local maximum nor a point of local minimum and is called the point of inflection.
Algorithm for determining a function has maximum value at given point:
Let the function be f(x)f(x)
Step 1: Find f(x)f'(x)
Step 2: Put f(x)=0f'(x) = 0 at given point and find xx
Step 3: Find f(x)f''(x) at xx and check it is less than 0.
If f(x)<0f''(x) < 0 then the function has maximum value at given point