Solveeit Logo

Question

Question: Let $\phi(x) = (f(x))^3-3(f(x))^2 + 4f(x) + 5x + 3 \sin x + 4 \cos x \forall x \in R$, where $f(x)$ ...

Let ϕ(x)=(f(x))33(f(x))2+4f(x)+5x+3sinx+4cosxxR\phi(x) = (f(x))^3-3(f(x))^2 + 4f(x) + 5x + 3 \sin x + 4 \cos x \forall x \in R, where f(x)f(x) is a differentiable function xR\forall x \in R, then

A

ϕ\phi is increasing whenever f is increasing

B

ϕ\phi is increasing whenever f is decreasing

C

ϕ\phi is decreasing whenever f is decreasing

D

ϕ\phi is decreasing if f(x)=11f^{'}(x) = -11

Answer

ϕ\phi is increasing whenever f is increasing, ϕ\phi is decreasing if f(x)=11f^{'}(x) = -11

Explanation

Solution

Let ϕ(x)=(f(x))33(f(x))2+4f(x)+5x+3sinx+4cosx\phi(x) = (f(x))^3-3(f(x))^2 + 4f(x) + 5x + 3 \sin x + 4 \cos x.
To determine when ϕ(x)\phi(x) is increasing or decreasing, we need to find its derivative ϕ(x)\phi'(x).
Using the chain rule and differentiation rules, we get:
ϕ(x)=ddx((f(x))3)3ddx((f(x))2)+4ddx(f(x))+ddx(5x)+ddx(3sinx)+ddx(4cosx)\phi'(x) = \frac{d}{dx}((f(x))^3) - 3\frac{d}{dx}((f(x))^2) + 4\frac{d}{dx}(f(x)) + \frac{d}{dx}(5x) + \frac{d}{dx}(3 \sin x) + \frac{d}{dx}(4 \cos x)
ϕ(x)=3(f(x))2f(x)3(2f(x)f(x))+4f(x)+5+3cosx4sinx\phi'(x) = 3(f(x))^2 f'(x) - 3(2f(x) f'(x)) + 4f'(x) + 5 + 3 \cos x - 4 \sin x
ϕ(x)=3(f(x))2f(x)6f(x)f(x)+4f(x)+5+3cosx4sinx\phi'(x) = 3(f(x))^2 f'(x) - 6f(x) f'(x) + 4f'(x) + 5 + 3 \cos x - 4 \sin x
Factor out f(x)f'(x) from the first three terms:
ϕ(x)=f(x)(3(f(x))26f(x)+4)+5+3cosx4sinx\phi'(x) = f'(x) (3(f(x))^2 - 6f(x) + 4) + 5 + 3 \cos x - 4 \sin x

Let y=f(x)y = f(x). Consider the quadratic expression 3y26y+43y^2 - 6y + 4. We can complete the square:
3y26y+4=3(y22y)+4=3(y22y+11)+4=3((y1)21)+4=3(y1)23+4=3(y1)2+13y^2 - 6y + 4 = 3(y^2 - 2y) + 4 = 3(y^2 - 2y + 1 - 1) + 4 = 3((y-1)^2 - 1) + 4 = 3(y-1)^2 - 3 + 4 = 3(y-1)^2 + 1.
Since (y1)20(y-1)^2 \ge 0 for all real yy, 3(y1)203(y-1)^2 \ge 0, so 3(y1)2+113(y-1)^2 + 1 \ge 1.
Thus, 3(f(x))26f(x)+413(f(x))^2 - 6f(x) + 4 \ge 1 for all xRx \in R.

Now consider the term 5+3cosx4sinx5 + 3 \cos x - 4 \sin x. The expression 3cosx4sinx3 \cos x - 4 \sin x can be written in the form Rcos(x+α)R \cos(x+\alpha), where R=32+(4)2=9+16=25=5R = \sqrt{3^2 + (-4)^2} = \sqrt{9+16} = \sqrt{25} = 5.
So, 3cosx4sinx=5(35cosx45sinx)3 \cos x - 4 \sin x = 5 (\frac{3}{5} \cos x - \frac{4}{5} \sin x). Let cosα=3/5\cos \alpha = 3/5 and sinα=4/5\sin \alpha = 4/5. Then 3cosx4sinx=5(cosαcosxsinαsinx)=5cos(x+α)3 \cos x - 4 \sin x = 5 (\cos \alpha \cos x - \sin \alpha \sin x) = 5 \cos(x+\alpha).
The range of cos(x+α)\cos(x+\alpha) is [1,1][-1, 1], so the range of 5cos(x+α)5 \cos(x+\alpha) is [5,5][-5, 5].
The term 5+3cosx4sinx=5+5cos(x+α)5 + 3 \cos x - 4 \sin x = 5 + 5 \cos(x+\alpha). Its range is [55,5+5]=[0,10][5-5, 5+5] = [0, 10].
Thus, 5+3cosx4sinx05 + 3 \cos x - 4 \sin x \ge 0 for all xRx \in R.

So, ϕ(x)=f(x)(3(f(x))26f(x)+4)+(5+3cosx4sinx)\phi'(x) = f'(x) (3(f(x))^2 - 6f(x) + 4) + (5 + 3 \cos x - 4 \sin x).
Let A(x)=3(f(x))26f(x)+4A(x) = 3(f(x))^2 - 6f(x) + 4 and B(x)=5+3cosx4sinxB(x) = 5 + 3 \cos x - 4 \sin x.
We have A(x)1A(x) \ge 1 and B(x)0B(x) \ge 0.
ϕ(x)=f(x)A(x)+B(x)\phi'(x) = f'(x) A(x) + B(x).

Let's examine the given options:

  1. ϕ\phi is increasing whenever f is increasing.
    If ff is increasing, then f(x)0f'(x) \ge 0.
    Since f(x)0f'(x) \ge 0 and A(x)1A(x) \ge 1, the term f(x)A(x)0f'(x) A(x) \ge 0.
    Since B(x)0B(x) \ge 0, ϕ(x)=f(x)A(x)+B(x)0+0=0\phi'(x) = f'(x) A(x) + B(x) \ge 0 + 0 = 0.
    If f(x)>0f'(x) > 0 for an interval, then f(x)A(x)>0f'(x)A(x) > 0 (since A(x)1A(x) \ge 1), and B(x)0B(x) \ge 0, so ϕ(x)>0\phi'(x) > 0.
    If f(x)=0f'(x) = 0 for an interval, then ϕ(x)=B(x)0\phi'(x) = B(x) \ge 0.
    In both cases, ϕ(x)0\phi'(x) \ge 0. Thus, ϕ\phi is increasing whenever ff is increasing. This option is correct.

  2. ϕ\phi is increasing whenever f is decreasing.
    If ff is decreasing, then f(x)0f'(x) \le 0.
    ϕ(x)=f(x)A(x)+B(x)\phi'(x) = f'(x) A(x) + B(x). Since f(x)0f'(x) \le 0 and A(x)1A(x) \ge 1, f(x)A(x)0f'(x) A(x) \le 0.
    So ϕ(x)=(0)+(0)\phi'(x) = (\le 0) + (\ge 0). The sign of ϕ(x)\phi'(x) is not guaranteed to be positive. For example, if f(x)f'(x) is a large negative number, f(x)A(x)f'(x)A(x) will be a large negative number, which might outweigh B(x)B(x). This option is incorrect.

  3. ϕ\phi is decreasing whenever f is decreasing.
    If ff is decreasing, then f(x)0f'(x) \le 0.
    ϕ(x)=f(x)A(x)+B(x)=(0)+(0)\phi'(x) = f'(x) A(x) + B(x) = (\le 0) + (\ge 0).
    The sign of ϕ(x)\phi'(x) is not guaranteed to be negative. For example, if f(x)=0f'(x) = 0, ϕ(x)=B(x)0\phi'(x) = B(x) \ge 0, so ϕ\phi is increasing or constant. If f(x)f'(x) is slightly negative, f(x)A(x)f'(x)A(x) might be small in magnitude and negative, while B(x)B(x) can be up to 10, making ϕ(x)\phi'(x) positive. This option is incorrect.

  4. ϕ\phi is decreasing if f(x)=11f^{'}(x) = -11.
    If f(x)=11f'(x) = -11, then ϕ(x)=(11)A(x)+B(x)\phi'(x) = (-11) A(x) + B(x).
    We know A(x)1A(x) \ge 1 and B(x)[0,10]B(x) \in [0, 10].
    So, 11A(x)11(1)=11-11 A(x) \le -11(1) = -11.
    ϕ(x)=11A(x)+B(x)\phi'(x) = -11 A(x) + B(x). The maximum value of B(x)B(x) is 10.
    Therefore, ϕ(x)11+10=1\phi'(x) \le -11 + 10 = -1.
    Since ϕ(x)1<0\phi'(x) \le -1 < 0 for all xx, ϕ(x)\phi(x) is strictly decreasing if f(x)=11f'(x) = -11. This option is correct.

The question asks for the correct option(s). Both option 1 and option 4 are correct.