Question
Question: Let (\phi(x) = 2\tan^{-1} x + \sin^{-1}\left( \frac{2x}{1 + x^{2}} \right)). Then –...
Let (\phi(x) = 2\tan^{-1} x + \sin^{-1}\left( \frac{2x}{1 + x^{2}} \right)). Then –
A
(\phi'(2) = \phi'(3))
B
(\phi'(2) = 0)
C
(\phi'\left( \frac{1}{2} \right) = \frac{16}{5})
D
(\phi'\left( \frac{1}{2} \right) = 0)
Answer
ϕ′(2)=ϕ′(3)
Explanation
Solution
If x ≤ 1, sin–1 1+x22x = 2 tan–1 x.
But, if x > 1, sin–1 1+x22x = π – 2tan–1 x
∴ for x < 1, we have (x) = 4tan–1x. So, ′(x) = 1+x24.
∴ ′(21)= 1+414 = 516.
and for x > 1, we have (x) = π ∴ f′(x) = 0.
Hence, ′(2) = 0 and ′(2) = ′(3) = 0.