Solveeit Logo

Question

Question: Let (\phi(x) = 2\tan^{-1} x + \sin^{-1}\left( \frac{2x}{1 + x^{2}} \right)). Then –...

Let (\phi(x) = 2\tan^{-1} x + \sin^{-1}\left( \frac{2x}{1 + x^{2}} \right)). Then –

A

(\phi'(2) = \phi'(3))

B

(\phi'(2) = 0)

C

(\phi'\left( \frac{1}{2} \right) = \frac{16}{5})

D

(\phi'\left( \frac{1}{2} \right) = 0)

Answer

ϕ(2)=ϕ(3)\phi'(2) = \phi'(3)

Explanation

Solution

If x ≤ 1, sin–1 2x1+x2\frac{2x}{1 + x^{2}} = 2 tan–1 x.

But, if x > 1, sin–1 2x1+x2\frac{2x}{1 + x^{2}} = π – 2tan–1 x

∴ for x < 1, we have ƒ(x) = 4tan–1x. So, ƒ′(x) = 41+x2\frac{4}{1 + x^{2}}.

∴ ƒ′(12)\left( \frac{1}{2} \right)= 41+14\frac{4}{1 + \frac{1}{4}} = 165\frac{16}{5}.

and for x > 1, we have ƒ(x) = π ∴ f′(x) = 0.

Hence, ƒ′(2) = 0 and ƒ′(2) = ƒ′(3) = 0.