Solveeit Logo

Question

Question: Let $P_1$ be a plane passing through two points $A(1, 2, 3)$ and $B(2, 1, -1)$ and perpendicular to ...

Let P1P_1 be a plane passing through two points A(1,2,3)A(1, 2, 3) and B(2,1,1)B(2, 1, -1) and perpendicular to the plane r(i^2j^+3k^)=1\vec{r} \cdot (\hat{i} - 2\hat{j} + 3\hat{k}) = 1. Let LL be a line through the point (1,1,1)(-1, 1, 1) and perpendicular to the line of intersection of planes P1P_1 and P2P_2 where equation of plane P2P_2 is r(i^+j^k^)=4\vec{r} \cdot (\hat{i} + \hat{j} - \hat{k}) = 4. If the equation of the line LL is x0a=yy112=zz1c\frac{x-0}{a} = \frac{y-y_1}{12} = \frac{z-z_1}{c}, then the value of (2y1z1ac)\left( \frac{2y_1 - z_1}{ac} \right) equals

Answer

0

Explanation

Solution

The equation of plane P1P_1 passes through A(1,2,3)A(1, 2, 3) and B(2,1,1)B(2, 1, -1) and is perpendicular to the plane r(i^2j^+3k^)=1\vec{r} \cdot (\hat{i} - 2\hat{j} + 3\hat{k}) = 1.

The vector AB=BA=(21,12,13)=(1,1,4)\vec{AB} = B - A = (2-1, 1-2, -1-3) = (1, -1, -4) lies in plane P1P_1.

The normal vector of the perpendicular plane is n3=(1,2,3)\vec{n_3} = (1, -2, 3).

The normal vector of plane P1P_1, n1\vec{n_1}, is perpendicular to both AB\vec{AB} and n3\vec{n_3}.

n1=AB×n3=(1,1,4)×(1,2,3)=i^j^k^114123=i^(38)j^(3(4))+k^(2(1))=11i^7j^k^\vec{n_1} = \vec{AB} \times \vec{n_3} = (1, -1, -4) \times (1, -2, 3) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & -4 \\ 1 & -2 & 3 \end{vmatrix} = \hat{i}(-3 - 8) - \hat{j}(3 - (-4)) + \hat{k}(-2 - (-1)) = -11\hat{i} - 7\hat{j} - \hat{k}.

We can take n1=(11,7,1)\vec{n_1} = (11, 7, 1).

The equation of plane P1P_1 is 11x+7y+z+d=011x + 7y + z + d = 0. Since it passes through A(1,2,3)A(1, 2, 3), 11(1)+7(2)+3+d=0    11+14+3+d=0    d=2811(1) + 7(2) + 3 + d = 0 \implies 11 + 14 + 3 + d = 0 \implies d = -28.

The equation of plane P1P_1 is 11x+7y+z28=011x + 7y + z - 28 = 0.

The equation of plane P2P_2 is r(i^+j^k^)=4\vec{r} \cdot (\hat{i} + \hat{j} - \hat{k}) = 4, which is x+yz=4x + y - z = 4.

The normal vector of P2P_2 is n2=(1,1,1)\vec{n_2} = (1, 1, -1).

The direction vector of the line of intersection of P1P_1 and P2P_2 is dI=n1×n2=(11,7,1)×(1,1,1)=(8,12,4)\vec{d_I} = \vec{n_1} \times \vec{n_2} = (11, 7, 1) \times (1, 1, -1) = (-8, 12, 4).

We can take a simpler direction vector dI=(2,3,1)\vec{d_I} = (-2, 3, 1).

The line LL is perpendicular to the line of intersection, so its direction vector dL\vec{d_L} is perpendicular to dI=(2,3,1)\vec{d_I} = (-2, 3, 1).

The equation of line LL is given as x0a=yy112=zz1c\frac{x-0}{a} = \frac{y-y_1}{12} = \frac{z-z_1}{c}.

The direction vector of line LL is (a,12,c)(a, 12, c).

Since dLdI\vec{d_L} \perp \vec{d_I}, their dot product is 0:

(a,12,c)(2,3,1)=0    2a+12(3)+c(1)=0    2a+36+c=0    c=2a36(a, 12, c) \cdot (-2, 3, 1) = 0 \implies -2a + 12(3) + c(1) = 0 \implies -2a + 36 + c = 0 \implies c = 2a - 36.

The line LL passes through the point (1,1,1)(-1, 1, 1). This point must satisfy the equation of line LL:

10a=1y112=1z1c\frac{-1-0}{a} = \frac{1-y_1}{12} = \frac{1-z_1}{c}.

From the first equality: 1a=1y112    12=a(1y1)    1y1=12/a    y1=1+12/a\frac{-1}{a} = \frac{1-y_1}{12} \implies -12 = a(1-y_1) \implies 1-y_1 = -12/a \implies y_1 = 1 + 12/a.

From the first equality: 1a=1z1c    c=a(1z1)    1z1=c/a    z1=1+c/a\frac{-1}{a} = \frac{1-z_1}{c} \implies -c = a(1-z_1) \implies 1-z_1 = -c/a \implies z_1 = 1 + c/a.

We need to find the value of (2y1z1ac)\left( \frac{2y_1 - z_1}{ac} \right).

First, calculate 2y1z12y_1 - z_1:

2y1z1=2(1+12a)(1+ca)=2+24a1ca=1+24ca2y_1 - z_1 = 2 \left( 1 + \frac{12}{a} \right) - \left( 1 + \frac{c}{a} \right) = 2 + \frac{24}{a} - 1 - \frac{c}{a} = 1 + \frac{24 - c}{a}.

Substitute c=2a36c = 2a - 36:

2y1z1=1+24(2a36)a=1+242a+36a=1+602aa=a+602aa=60aa2y_1 - z_1 = 1 + \frac{24 - (2a - 36)}{a} = 1 + \frac{24 - 2a + 36}{a} = 1 + \frac{60 - 2a}{a} = \frac{a + 60 - 2a}{a} = \frac{60 - a}{a}.

Now, calculate the expression 2y1z1ac\frac{2y_1 - z_1}{ac}:

2y1z1ac=60aaa(2a36)=60aa2(2a36)\frac{2y_1 - z_1}{ac} = \frac{\frac{60 - a}{a}}{a(2a - 36)} = \frac{60 - a}{a^2(2a - 36)}.

The problem asks for "the value", implying a unique constant value. This suggests that the expression must be independent of aa. The expression 60aa2(2a36)\frac{60 - a}{a^2(2a - 36)} is a rational function of aa, which is not a constant unless the numerator is zero for all valid aa, or the numerator is proportional to the denominator.

The numerator 60a60-a is zero when a=60a=60.

If a=60a=60, the denominator is 602(2×6036)=3600(12036)=3600(84)060^2(2 \times 60 - 36) = 3600(120 - 36) = 3600(84) \neq 0.

In this case, the value of the expression is 0non-zero=0\frac{0}{\text{non-zero}} = 0.

The value of (2y1z1ac)\left( \frac{2y_1 - z_1}{ac} \right) is 0.