Solveeit Logo

Question

Question: Let P(0,3,4) and Q(5,12,0) be 2 given points. A is point on x axis for which PA+QA is minimum. B is ...

Let P(0,3,4) and Q(5,12,0) be 2 given points. A is point on x axis for which PA+QA is minimum. B is a point on Y axis for which PB+QB is minimum. C is a point on z axis for which PC+QC is minimum. then find eq of plane through ABC and volume of tetrahedron OABC

Answer

Plane: 17x25+y7+4z13=1\displaystyle \frac{17x}{25}+\frac{y}{7}+\frac{4z}{13}=1

Volume of Tetrahedron OABC: 2275408\displaystyle \frac{2275}{408}

Explanation

Solution

We are given

P(0,3,4),Q(5,12,0)P(0,3,4),\quad Q(5,12,0)

and we need to choose

  • A on the x‐axis, i.e. A=(a,0,0)A=(a,0,0) so that PA+QAPA+QA is minimum,
  • B on the y‐axis, i.e. B=(0,b,0)B=(0,b,0) so that PB+QBPB+QB is minimum,
  • C on the z‐axis, i.e. C=(0,0,c)C=(0,0,c) so that PC+QCPC+QC is minimum.

Then we find (i) the equation of the plane through A, B, C and (ii) the volume of tetrahedron OABC.

We now show a brief solution.

Step 1. Find A on the x–axis

Let

A=(a,0,0).A=(a,0,0).

Then

PA=(a0)2+(03)2+(04)2=a2+9+16=a2+25,PA=\sqrt{(a-0)^2+(0-3)^2+(0-4)^2}=\sqrt{a^2+9+16}=\sqrt{a^2+25}, QA=(a5)2+(012)2+(00)2=(a5)2+144.QA=\sqrt{(a-5)^2+(0-12)^2+(0-0)^2}=\sqrt{(a-5)^2+144}.

So the distance function is

f(a)=a2+25+(a5)2+144.f(a)=\sqrt{a^2+25}+\sqrt{(a-5)^2+144}.

Differentiate with respect to aa and set f(a)=0f'(a)=0. (A standard trick is to set up the derivative:)

ddaa2+25=aa2+25,dda(a5)2+144=a5(a5)2+144.\frac{d}{da}\sqrt{a^2+25}=\frac{a}{\sqrt{a^2+25}},\quad \frac{d}{da}\sqrt{(a-5)^2+144}=\frac{a-5}{\sqrt{(a-5)^2+144}}.

Thus the condition is

aa2+25+a5(a5)2+144=0.\frac{a}{\sqrt{a^2+25}}+\frac{a-5}{\sqrt{(a-5)^2+144}}=0.

Solve by isolating one term and then squaring:

aa2+25=5a(a5)2+144,\frac{a}{\sqrt{a^2+25}}=\frac{5-a}{\sqrt{(a-5)^2+144}},

Squaring gives:

a2a2+25=(5a)2(a5)2+144.\frac{a^2}{a^2+25}=\frac{(5-a)^2}{(a-5)^2+144}.

Noting that (5a)2=(a5)2,(5-a)^2=(a-5)^2, cross–multiply:

a2[(a5)2+144]=(a5)2(a2+25).a^2[(a-5)^2+144]= (a-5)^2(a^2+25).

Expanding and canceling the common term we get:

144a2=25(a5)2.144a^2=25(a-5)^2.

Taking positive square roots (we expect the optimum to occur with a>0a>0) gives

12a=5a5.12a=5|a-5|.

(For aa between 0 and 5, a5a-5 is negative so a5=5a|a-5|=5-a.) Thus

12a=5(5a)12a=255a17a=25,12a=5(5-a)\quad\Longrightarrow\quad 12a=25-5a\quad\Longrightarrow\quad 17a=25,

so

a=2517.a=\frac{25}{17}.

Thus,

A=(2517,0,0).A=\left(\frac{25}{17},\,0,\,0\right).

Step 2. Find B on the y–axis

Let

B=(0,b,0).B=(0,b,0).

Then

PB=(00)2+(b3)2+(04)2=(b3)2+16,PB=\sqrt{(0-0)^2+(b-3)^2+(0-4)^2}=\sqrt{(b-3)^2+16}, QB=(50)2+(12b)2+(00)2=25+(12b)2.QB=\sqrt{(5-0)^2+(12-b)^2+(0-0)^2}=\sqrt{25+(12-b)^2}.

Define

g(b)=(b3)2+16+(12b)2+25.g(b)=\sqrt{(b-3)^2+16}+\sqrt{(12-b)^2+25}.

Differentiating and setting g(b)=0g'(b)=0 leads to

b3(b3)2+1612b(12b)2+25=0.\frac{b-3}{\sqrt{(b-3)^2+16}}-\frac{12-b}{\sqrt{(12-b)^2+25}}=0.

So

b3(b3)2+16=12b(12b)2+25.\frac{b-3}{\sqrt{(b-3)^2+16}}=\frac{12-b}{\sqrt{(12-b)^2+25}}.

Squaring both sides yields:

(b3)2(b3)2+16=(12b)2(12b)2+25.\frac{(b-3)^2}{(b-3)^2+16}=\frac{(12-b)^2}{(12-b)^2+25}.

Cross–multiplying,

(b3)2[(12b)2+25]=(12b)2[(b3)2+16].(b-3)^2[(12-b)^2+25] = (12-b)^2[(b-3)^2+16].

Cancel the common term and simplify to obtain:

25(b3)2=16(12b)2.25(b-3)^2 = 16(12-b)^2.

Taking square roots (and for 3<b<123<b<12 we have b3>0b-3>0 and 12b>012-b>0):

5(b3)=4(12b).5(b-3)=4(12-b).

Solve:

5b15=484b9b=63b=7.5b-15 = 48-4b\quad\Longrightarrow\quad9b=63\quad\Longrightarrow\quad b=7.

Thus,

B=(0,7,0).B=(0,7,0).

Step 3. Find C on the z‐axis

Let

C=(0,0,c).C=(0,0,c).

Then

PC=(00)2+(03)2+(c4)2=9+(c4)2,PC=\sqrt{(0-0)^2+(0-3)^2+(c-4)^2}=\sqrt{9+(c-4)^2}, QC=(50)2+(120)2+(0c)2=25+144+c2=c2+169.QC=\sqrt{(5-0)^2+(12-0)^2+(0-c)^2}=\sqrt{25+144+c^2}=\sqrt{c^2+169}.

So

h(c)=(c4)2+9+c2+169.h(c)=\sqrt{(c-4)^2+9}+\sqrt{c^2+169}.

Differentiate with respect to cc to get:

ddc(c4)2+9=c4(c4)2+9,ddcc2+169=cc2+169.\frac{d}{dc}\sqrt{(c-4)^2+9}=\frac{c-4}{\sqrt{(c-4)^2+9}},\quad \frac{d}{dc}\sqrt{c^2+169}=\frac{c}{\sqrt{c^2+169}}.

Setting the derivative to zero,

c4(c4)2+9+cc2+169=0.\frac{c-4}{\sqrt{(c-4)^2+9}}+\frac{c}{\sqrt{c^2+169}}=0.

That is,

c4(c4)2+9=cc2+169.\frac{c-4}{\sqrt{(c-4)^2+9}} = -\frac{c}{\sqrt{c^2+169}}.

Square both sides:

(c4)2(c4)2+9=c2c2+169.\frac{(c-4)^2}{(c-4)^2+9}=\frac{c^2}{c^2+169}.

Cross–multiply:

(c4)2(c2+169)=c2[(c4)2+9].(c-4)^2(c^2+169)= c^2[(c-4)^2+9].

A cancellation leads to

169(c4)2=9c2.169(c-4)^2= 9c^2.

Thus,

(c4)2=9169c2.(c-4)^2=\frac{9}{169}c^2.

Taking square roots (and noting that for the optimum we expect c<4c<4 so that 4c>04-c>0):

4c=313c.4-c=\frac{3}{13}c.

So,

4=(1+313)c=1613cc=134.4=\left(1+\frac{3}{13}\right)c=\frac{16}{13}c\quad\Longrightarrow\quad c=\frac{13}{4}.

Thus,

C=(0,0,134).C=\Bigl(0,\,0,\,\frac{13}{4}\Bigr).

Step 4. Equation of the Plane Through A, B, C

We now have

A=(2517,0,0),B=(0,7,0),C=(0,0,134).A=\left(\frac{25}{17},0,0\right),\quad B=(0,7,0),\quad C=\Bigl(0,0,\frac{13}{4}\Bigr).

A very neat form is to use the intercept form of a plane. Indeed, a plane with intercepts l,m,nl, m, n on the x,y,zx,y,z–axes has equation

xl+ym+zn=1.\frac{x}{l}+\frac{y}{m}+\frac{z}{n}=1.

Here, the intercepts are exactly the coordinates of A, B, C so that

l=2517,m=7,n=134.l=\frac{25}{17},\quad m=7,\quad n=\frac{13}{4}.

Thus the plane is

17x25+y7+4z13=1.\frac{17x}{25}+\frac{y}{7}+\frac{4z}{13}=1.

Step 5. Volume of Tetrahedron OABC

The tetrahedron has vertices O (origin), A, B, C. Its volume is

V=16det(25170007000134).V=\frac{1}{6}\left|\det\begin{pmatrix} \frac{25}{17} & 0 & 0\\[1mm] 0 & 7 & 0\\[1mm] 0 & 0 & \frac{13}{4} \end{pmatrix}\right|.

The determinant is the product of the diagonal entries:

det=2517×7×134=25713174=227568.\det = \frac{25}{17}\times 7\times\frac{13}{4}=\frac{25\cdot7\cdot13}{17\cdot4}=\frac{2275}{68}.

Thus,

V=16227568=2275408.V=\frac{1}{6}\cdot\frac{2275}{68}=\frac{2275}{408}.

Minimal –to–the–point explanation

  1. Write the expression for PA+QAPA+QA when A=(a,0,0)A=(a,0,0) and minimize to get a=2517a=\frac{25}{17}.
  2. Similarly, by writing PB+QBPB+QB for B=(0,b,0)B=(0,b,0) you get b=7b=7.
  3. Writing PC+QCPC+QC for C=(0,0,c)C=(0,0,c) leads to c=134c=\frac{13}{4}.
  4. The plane through A, B, C is written in intercept form as x25/17+y7+z13/4=1,or17x25+y7+4z13=1.\frac{x}{25/17}+\frac{y}{7}+\frac{z}{13/4}=1,\quad \text{or}\quad \frac{17x}{25}+\frac{y}{7}+\frac{4z}{13}=1.
  5. The volume of tetrahedron OABC is V=16(25177134)=2275408V=\frac{1}{6}\left(\frac{25}{17}\cdot7\cdot\frac{13}{4}\right)=\frac{2275}{408}.