Solveeit Logo

Question

Mathematics Question on Parabola

Let P : y 2 = 4 ax , a > 0 be a parabola with focus S. Let the tangents to the parabola P make an angle of π/4 with the line y = 3 x + 5 touch the parabola P at A and B. Then the value of a for which A , B and S are collinear is

A

8 only

B

2 only

C

14\frac{1}{4} only

D

any a > 0

Answer

any a > 0

Explanation

Solution

The correct answer is (D) : any a > 0
P:y2=4ax,a>0P:y²=4ax, a > 0 S(a,0)S(a,0)
Equation of tangent on parabola
y=mx+amy = mx + \frac{a}{m}
y = 3x + 5
tanπ4=m31+3mm3=±(1+3m)tan \frac{π}{4} = |\frac{m-3}{1+3m} | ⇒ m-3 = ± ( 1+3m )
m-3 = 1+3m
m=-2
m-3 = -1-3m
m=12m=\frac{1}{2}

Equation of one tangent :y=2xa2 y = -2x - \frac{a}{2}
Equation of other tangent : y=x2+2ay = \frac{x}{2} + 2a
Point of contact are
(a(2)2,2a(2))and(a(12)2,2a12)( \frac{a}{(-2)²} , \frac{-2a}{(-2)} ) and ( \frac{a}{(\frac{1}{2})²} , \frac{-2a}{\frac{1}{2}} )
A(a4,a)A ( \frac{a}{4},a) and B(4a,4a)B (4a,-4a)
Now or (ΔABS)(ΔABS) = 0 [ S is the focus ]
12a4a1 4a4a1 a01=0\frac{1}{2} \begin{vmatrix} \frac{a}{4} & a & 1 \\\ 4a & -4a & 1 \\\ a& 0 & 1 \end{vmatrix} = 0
a4(4a0)a(4aa)+1(0(4a2))=0⇒ \frac{a}{4} (-4a-0) -a(4a-a) + 1(0-(-4a²)) = 0
=a23a2+4a2=0= -a² -3a² + 4a² = 0
Always true