Solveeit Logo

Question

Question: Let \[P = \\{ \theta :\sin \theta - \cos \theta = \sqrt 2 \cos \theta \\} \] and \[Q = \\{ \theta :\...

Let P=θ:sinθcosθ=2cosθP = \\{ \theta :\sin \theta - \cos \theta = \sqrt 2 \cos \theta \\} and Q=θ:sinθ+cosθ=2sinθQ = \\{ \theta :\sin \theta + \cos \theta = \sqrt 2 \sin \theta \\} be two sets then
A. PQP \subset Qand QPϕQ - P \ne \phi
B.Q⊄PQ \not\subset P
C. P⊄QP \not\subset Q
D. P=QP = Q

Explanation

Solution

We solve for the values of θ\theta from both sets. Shift all similar functions on one side and calculate the value of tangent of angle in both sets. Rationalize the term formed in the second set. Check if the values of P and Q are equal, unequal, subsets or not.

  • tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}

Complete step by step answer:
We are given two sets P=θ:sinθcosθ=2cosθP = \\{ \theta :\sin \theta - \cos \theta = \sqrt 2 \cos \theta \\} and Q=θ:sinθ+cosθ=2sinθQ = \\{ \theta :\sin \theta + \cos \theta = \sqrt 2 \sin \theta \\}
We first solve for set P
P=θ:sinθcosθ=2cosθP = \\{ \theta :\sin \theta - \cos \theta = \sqrt 2 \cos \theta \\}
sinθcosθ=2cosθ\Rightarrow \sin \theta - \cos \theta = \sqrt 2 \cos \theta
Shift all cosine values to RHS
sinθ=2cosθ+cosθ\Rightarrow \sin \theta = \sqrt 2 \cos \theta + \cos \theta
sinθ=(2+1)cosθ\Rightarrow \sin \theta = (\sqrt 2 + 1)\cos \theta
Divide both sides by cosine of angle
sinθcosθ=(2+1)cosθcosθ\Rightarrow \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{{(\sqrt 2 + 1)\cos \theta }}{{\cos \theta }}
Cancel same terms from numerator and denominator
tanθ=(2+1)\Rightarrow \tan \theta = (\sqrt 2 + 1)
Take inverse tangent on both sides of the equation
tan1(tanθ)=tan1(2+1)\Rightarrow {\tan ^{ - 1}}\left( {\tan \theta } \right) = {\tan ^{ - 1}}(\sqrt 2 + 1)
Cancel inverse function by function
θ=tan1(2+1)\Rightarrow \theta = {\tan ^{ - 1}}(\sqrt 2 + 1) … (1)
Now we solve for set Q
Q=θ:sinθ+cosθ=2sinθQ = \\{ \theta :\sin \theta + \cos \theta = \sqrt 2 \sin \theta \\}
sinθ+cosθ=2sinθ\Rightarrow \sin \theta + \cos \theta = \sqrt 2 \sin \theta
Shift all sine values to RHS
cosθ=2sinθsinθ\Rightarrow \cos \theta = \sqrt 2 \sin \theta - \sin \theta
cosθ=(21)sinθ\Rightarrow \cos \theta = (\sqrt 2 - 1)\sin \theta
Divide both sides by sine of angle
cosθsinθ=(21)sinθsinθ\Rightarrow \dfrac{{\cos \theta }}{{\sin \theta }} = \dfrac{{(\sqrt 2 - 1)\sin \theta }}{{\sin \theta }}
Take reciprocal on both sides
sinθcosθ=sinθ(21)sinθ\Rightarrow \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{{\sin \theta }}{{(\sqrt 2 - 1)\sin \theta }}
Cancel same terms from numerator and denominator
tanθ=1(21)\Rightarrow \tan \theta = \dfrac{1}{{(\sqrt 2 - 1)}}
Rationalize RHS
tanθ=121×2+12+1\Rightarrow \tan \theta = \dfrac{1}{{\sqrt 2 - 1}} \times \dfrac{{\sqrt 2 + 1}}{{\sqrt 2 + 1}}
Use the formula (ab)(a+b)=a2b2(a - b)(a + b) = {a^2} - {b^2}
tanθ=2+1(2)2(1)2\Rightarrow \tan \theta = \dfrac{{\sqrt 2 + 1}}{{{{\left( {\sqrt 2 } \right)}^2} - {{\left( 1 \right)}^2}}}
tanθ=2+121\Rightarrow \tan \theta = \dfrac{{\sqrt 2 + 1}}{{2 - 1}}
tanθ=2+11\Rightarrow \tan \theta = \dfrac{{\sqrt 2 + 1}}{1}
tanθ=2+1\Rightarrow \tan \theta = \sqrt 2 + 1
Take inverse tangent on both sides of the equation
tan1(tanθ)=tan1(2+1)\Rightarrow {\tan ^{ - 1}}\left( {\tan \theta } \right) = {\tan ^{ - 1}}(\sqrt 2 + 1)
Cancel inverse function by function
θ=tan1(2+1)\Rightarrow \theta = {\tan ^{ - 1}}(\sqrt 2 + 1) … (2)
From both equations (1) and (2) we have θ=tan1(2+1)\theta = {\tan ^{ - 1}}(\sqrt 2 + 1)
P=Q\Rightarrow P = Q

\therefore Option D is correct.

Note: Many students make the mistake of leaving the value of tangent of angle in fraction form which is wrong, keep in mind we always have to have value in denominator not as an irrational number i.e. of kind under root, exponential form etc. Here we have terms under root in the denominator so we have to rationalize it in order to form an answer and then compare the values. Also, when taking inverse functions on both sides, we take the same functions inverse in order to cancel out a function and obtain the value of angle.