Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

Let P=θ:sinθcosθ=2cosθP = \\{ \theta : \sin \theta - \cos \theta = \sqrt{2} \cos \theta \\} and Q=θ:sinθ+cosθ=2sinθQ = \\{\theta : \sin \theta + \cos \theta = \sqrt{2} \sin \theta \\} be two sets. Then :

A

PQP \subset Q and QpϕQ -p \neq \phi

B

Q?PQ ? P

C

P?QP ? Q

D

P=QP = Q

Answer

P=QP = Q

Explanation

Solution

For Let PP
sinθ=cosθ(2+1)\sin \theta=\cos \theta(\sqrt{2}+1)
(21)sinθ=cosθ...(i)(\sqrt{2}-1) \sin \theta=\cos \theta\,\,\,\,\,\,\,...(i)
For Let QQ
cosθ=(21)sinθ...(ii)\cos \theta=(\sqrt{2}-1) \sin \theta\,\,\,\,\,\,\,...(ii)
(i) & (ii) are same P=QP = Q