Solveeit Logo

Question

Mathematics Question on Linear Equations

Let p , q , r be non-zero real numbers that are, respectively, the 10th, 100th and 1000th terms of a harmonic progression. Consider the system of linear equations
x + y + z = 1
10 x + 100 y + 1000 z = 0
qr x + pr y + pq z = 0

List-IList-II
(I)If qr=10\frac{q}{r}=10,
then the system of linear equations has(P)
y=109,z=19y=\frac{10}{9},z=-\frac{1}{9}
as a solution
(II)If pr100\frac{p}{r}≠100,
then the system of linear equations has(Q)
as a solution
(III)If pq10,\frac{p}{q}≠10,
then the system of linear equations has(R)
(IV)If pq=10,\frac{p}{q}=10,
then the system of linear equations has(S)
(T)
A

(I) → (T); (II) → (R); (III) → (S); (IV) → (T)

B

(I) → (Q); (II) → (S); (III) → (S); (IV) → (R)

C

(I) → (Q); (II) → (R); (III) → (P); (IV) → (R)

D

(I) → (T); (II) → (S); (III) → (P); (IV) → (T)

Answer

(I) → (Q); (II) → (S); (III) → (S); (IV) → (R)

Explanation

Solution

The correct answer is option (B): (I) → (Q); (II) → (S); (III) → (S); (IV) → (R)
x+y+z=1.....(1)x + y + z = 1 ..... (1)
10x+100y+1000z=0.....(2)10x + 100y + 1000z = 0 ..... (2)
xp+yq+zr=0\frac{x}{p} + \frac{y}{q} + \frac{z}{r} = 0

1p=A+9d,1q=A+99d,1r=A+999d\frac{1}{p} = A + 9d, \quad \frac{1}{q} = A + 99d, \quad \frac{1}{r} = A + 999d

From equation (2) and (3), we get (Ad)x+(Ad)y+(Ad)z=0(A-d)x+(A-d)y+(A-d)z=0
If A≠d, then no solution
Option I: If qr=10a=d\frac{q}{r} = 10 ⇒ a = d
And eq. (1) and eq. (2) represents non-parallel planes and eq. (2) and eq. (3) represents same plane

Infinitely many solutions
I → P , Q , R , T
Option II : pr100\frac{p}{r}≠100 ada≠d
No solution
II → S

Option III:
\frac{p}{q}≠10,$$⇒$$a≠d
No solution
III → S

Option IV: If \frac{p}{q}=10,$$⇒$$a=d
Infinitely many solutions

IV → P , Q , R , T