Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

Let p,qp, q and rr be the sides opposite to the angles P,QP, Q and RR, respectively in a ΔPQR\Delta P Q R. If r2sinPsinQ=pqr^{2} \sin P \sin Q=p q, then the triangle is

A

equilateral

B

acute angled but not equilateral

C

obtuse angled

D

right angled

Answer

right angled

Explanation

Solution

We know that in ΔABC\Delta A B C
asinA=bsinB=csinC=2R\frac{a}{\sin A} =\frac{b}{\sin B}=\frac{c}{\sin C}=2 R
r2sinPsinQ=pq\therefore r^{2} \sin P \sin Q=p q
r2p2R1q2R1=pq\Rightarrow r^{2} \cdot \frac{p}{2 R_{1}} \cdot \frac{q}{2 R_{1}}=p q,
where R1R_{1} is circumradius of ΔPQR\Delta P Q R.
r2=4R12\Rightarrow r^{2}=4 R_{1}^{2}
r=2R1\Rightarrow r=2 R_{1}
2R1sinR=2R1\Rightarrow 2 R_{1} \sin R=2 R_{1}
R1=90\Rightarrow R_{1}=90^{\circ}
ΔPQR\therefore \Delta P Q R is right angled.