Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

Let p,qp, q and rr be the side4s opposite to the angles P,QP, Q and RR, respectively in a ΔPQR\Delta P Q R. Then, 2prsin(PQ+R2)2 p r \sin \left(\frac{P-Q+R}{2}\right) equals

A

p2+q2+r2p^{2}+q^{2}+r^{2}

B

p2+r2q2p^{2}+r^{2}-q^{2}

C

q2+r2p2q^{2}+r^{2}-p^{2}

D

p2+q2r2p^{2}+q^{2}-r^{2}

Answer

p2+r2q2p^{2}+r^{2}-q^{2}

Explanation

Solution

In PQR,P+Q+R=180\triangle P Q R, P+Q+R=180^{\circ}
2prsin(PQ+R2)\therefore 2 p r \sin \left(\frac{P-Q+R}{2}\right)
=2prsin180QQ2=2 p r \sin \frac{180^{\circ}-Q-Q}{2}
=2prsin(90Q)=2 p r \sin \left(90^{\circ}-Q\right)
=2prcosQ=2 p r \cos Q
In ΔPQRcosQ=p2+r2q22pr)\left.\Delta P Q R \cos Q =\frac{p^{2}+r^{2}-q^{2}}{2 p r}\right)
=2pr(p2+r2q22pr)=p2+r2q2=2 p r\left(\frac{p^{2}+r^{2}-q^{2}}{2 p r}\right)=p^{2}+r^{2}-q^{2}