Solveeit Logo

Question

Question: Let \(p = \mathop {\lim }\limits_{x \to 0 + } {(1 + {\tan ^2}\sqrt x )^{\dfrac{1}{{2x}}}}\)then \(\l...

Let p=limx0+(1+tan2x)12xp = \mathop {\lim }\limits_{x \to 0 + } {(1 + {\tan ^2}\sqrt x )^{\dfrac{1}{{2x}}}}then logp\log p is equal to:
a)2 b)1 c)12 d)14  a)\,2 \\\ b)\,1 \\\ c)\,\dfrac{1}{2} \\\ d)\,\dfrac{1}{4} \\\

Explanation

Solution

By observing the equation we can see that the intermediate form 1{1^\infty }. So we solve it according to this
limx0(f(x))g(x)\mathop {\lim }\limits_{x \to 0} {(f(x))^{g(x)}}where for x0f(x)1x \to 0\,f(x) \to 1and for x0g(x)x \to 0\,\,\,g(x) \to \infty . Then
limx0(f(x))g(x)=elimx0+(f(x)1)g(x)\mathop {\lim }\limits_{x \to 0} {(f(x))^{g(x)}} = {e^{\mathop {\lim }\limits_{x \to 0 + } \dfrac{{(f(x) - 1)}}{{g(x)}}}}

Complete step-by-step answer:
Given p=limx0+(1+tan2x)12xp = \mathop {\lim }\limits_{x \to 0 + } {(1 + {\tan ^2}\sqrt x )^{\dfrac{1}{{2x}}}} (1) \to (1)
We can see that for x0+,1+tan2x1x \to {0^ + },1 + {\tan ^2}\sqrt x \to 1and for x0+,12xx \to {0^ + },\dfrac{1}{{2x}} \to \infty
So for x0+,(1+tan2x)12x1x \to {0^ + },{(1 + {\tan ^2}\sqrt x )^{\dfrac{1}{{2x}}}} \to {1^\infty }
So it is an intermediate form 1{1^\infty }.
And we know for 1{1^\infty }intermediate form limx0(f(x))g(x)\mathop {\lim }\limits_{x \to 0} {(f(x))^{g(x)}}where for x0f(x)1x \to 0\,f(x) \to 1and for x0g(x)x \to 0\,\,\,g(x) \to \infty .
limx0(f(x))g(x)=elimx0+(f(x)1)g(x)\mathop {\lim }\limits_{x \to 0} {(f(x))^{g(x)}} = {e^{\mathop {\lim }\limits_{x \to 0 + } \dfrac{{(f(x) - 1)}}{{g(x)}}}} (2) \to (2)
Now using (2) in (1) we get,

p=limx0+(1+tan2x)12x=elimx012x(1+tan2x1) p=elimx0tan2x2x p=elimx0tan2x2x2 p=elimx0(tanxx)2×12  p = \mathop {\lim }\limits_{x \to 0 + } {(1 + {\tan ^2}\sqrt x )^{\dfrac{1}{{2x}}}} = {e^{\mathop {\lim }\limits_{x \to 0} \dfrac{1}{{2x}}(1 + {{\tan }^2}\sqrt x - 1)}} \\\ p = {e^{\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\tan }^2}\sqrt x }}{{2x}}}} \\\ p = {e^{\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\tan }^2}\sqrt x }}{{2{{\sqrt x }^2}}}}} \\\ p = {e^{\mathop {\lim }\limits_{x \to 0} {{\left( {\dfrac{{\tan \sqrt x }}{{\sqrt x }}} \right)}^2} \times \dfrac{1}{2}}} \\\

Now using limx0+(tanxx)2=1\mathop {\lim }\limits_{x \to 0 + } {\left( {\dfrac{{\tan \sqrt x }}{{\sqrt x }}} \right)^2} = 1. We get,
p=e12(1) p=e12(3)  p = {e^{\dfrac{1}{2}(1)}} \\\ p = {e^{\dfrac{1}{2}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to (3) \\\
Now we need to find the value of logp\log p, according to the question.
So taking log on both sides in (3), we get
logp=loge12\log p = \log {e^{\dfrac{1}{2}}}
Now using logeb=bloge=b(1)=b\log {e^b} = b\log e = b(1) = b
logp=12loge=12\log p = \dfrac{1}{2}\log e = \dfrac{1}{2}
So logp=12\log p = \dfrac{1}{2}

So, the correct answer is “Option C”.

Note: Using tanx=x+x33+2x515+.............\tan x = x + \dfrac{{{x^3}}}{3} + \dfrac{{2{x^5}}}{{15}} + ..............
We can see that

limx0+(tanxx)2=limx0+(x+x33+2x515+...........x) =limx0+(1+x23+2x415+..........) =1  \mathop {\lim }\limits_{x \to 0 + } {\left( {\dfrac{{\tan \sqrt x }}{{\sqrt x }}} \right)^2} = \mathop {\lim }\limits_{x \to 0 + } \left( {\dfrac{{\sqrt x + \dfrac{{{{\sqrt x }^3}}}{3} + \dfrac{{2{{\sqrt x }^5}}}{{15}} + ...........}}{{\sqrt x }}} \right) \\\ = \mathop {\lim }\limits_{x \to 0 + } \left( {1 + \dfrac{{{{\sqrt x }^2}}}{3} + \dfrac{{2{{\sqrt x }^4}}}{{15}} + ..........} \right) \\\ = 1 \\\

This point is important to solve this question. And we take log\log with base ee and then logee=1{\log _e}e = 1. And will not take log\log with base 1010.