Solveeit Logo

Question

Question: Let $$p = \lim_{n \to \infty} \sum_{m=n^2}^{2n^2} \frac{1}{\sqrt{5n^4 + n^3 + m}}.$$ Find the value...

Let p=limnm=n22n215n4+n3+m.p = \lim_{n \to \infty} \sum_{m=n^2}^{2n^2} \frac{1}{\sqrt{5n^4 + n^3 + m}}.

Find the value of 105p10\sqrt{5}p.

Answer

10

Explanation

Solution

The limit of the sum can be evaluated using the Squeeze Theorem. The number of terms in the summation is n2+1n^2+1. The bounds for the terms are: 15n4+n3+2n215n4+n3+m15n4+n3+n2\frac{1}{\sqrt{5n^4 + n^3 + 2n^2}} \le \frac{1}{\sqrt{5n^4 + n^3 + m}} \le \frac{1}{\sqrt{5n^4 + n^3 + n^2}} Multiplying by the number of terms: n2+15n4+n3+2n2m=n22n215n4+n3+mn2+15n4+n3+n2\frac{n^2+1}{\sqrt{5n^4 + n^3 + 2n^2}} \le \sum_{m=n^2}^{2n^2} \frac{1}{\sqrt{5n^4 + n^3 + m}} \le \frac{n^2+1}{\sqrt{5n^4 + n^3 + n^2}} Taking the limit as nn \to \infty for both bounds: limnn2+15n4+n3+2n2=15\lim_{n \to \infty} \frac{n^2+1}{\sqrt{5n^4 + n^3 + 2n^2}} = \frac{1}{\sqrt{5}} limnn2+15n4+n3+n2=15\lim_{n \to \infty} \frac{n^2+1}{\sqrt{5n^4 + n^3 + n^2}} = \frac{1}{\sqrt{5}} By the Squeeze Theorem, p=15p = \frac{1}{\sqrt{5}}. Therefore, 105p=105×15=1010\sqrt{5}p = 10\sqrt{5} \times \frac{1}{\sqrt{5}} = 10.