Solveeit Logo

Question

Question: Let \(P \left( x _ { 1 } , y _ { 1 } \right)\) and \(Q \left( x _ { 2 } , y _ { 2 } \right)\)are t...

Let P(x1,y1)P \left( x _ { 1 } , y _ { 1 } \right) and Q(x2,y2)Q \left( x _ { 2 } , y _ { 2 } \right)are two points such that their abscissa x1x _ { 1 } and x2x _ { 2 } are the roots of the equation x2+2x3=0x ^ { 2 } + 2 x - 3 = 0 while the ordinates y1y _ { 1 } and y2y _ { 2 } are the roots of the equation y2+4y12=0y ^ { 2 } + 4 y - 12 = 0. The centre of the circle with PQ as diameter is.

A

(1,2)( - 1 , - 2 )

B

(1,2)( 1,2 )

C

(1,2)( 1 , - 2 )

D

(1,2)( - 1,2 )

Answer

(1,2)( - 1 , - 2 )

Explanation

Solution

x1,x2x _ { 1 } , x _ { 2 }are roots of x2+2x+3=0x ^ { 2 } + 2 x + 3 = 0

x1+x2=2x _ { 1 } + x _ { 2 } = - 2

x1+x22=1\frac { x _ { 1 } + x _ { 2 } } { 2 } = - 1

y1,y2y _ { 1 } , y _ { 2 } are roots of y2+4y12=0y ^ { 2 } + 4 y - 12 = 0

y1+y2=4y1+y22=2y _ { 1 } + y _ { 2 } = - 4 \Rightarrow \frac { y _ { 1 } + y _ { 2 } } { 2 } = - 2

Centre of circle (x1+x22,y1+y22)=(1,2)\left( \frac { x _ { 1 } + x _ { 2 } } { 2 } , \frac { y _ { 1 } + y _ { 2 } } { 2 } \right) = ( - 1 , - 2 ).