Question
Question: Let \(P = \left( {\begin{array}{*{20}{c}} 1&0&0 \\\ 4&1&0 \\\ {16}&4&1 \end{array}} \right)\...
Let P = \left( {\begin{array}{*{20}{c}}
1&0&0 \\\
4&1&0 \\\
{16}&4&1
\end{array}} \right) and I be the identity matrix of order 3. If Q=[qij] is a matrix such that P50−Q=I, then q21q31+q32equals
A. 52
B. 103
C. 201
D. 205
Solution
This is a very interesting problem related with matrices and their properties. First compute the matrix P50. Then find the difference matrix P50−Q. Finally equate it with identity matrix I of the same order, element by element values. Some mathematical operations will give the result.
Complete step-by-step answer:
Given matrix in the problem is,
$P = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
4&1&0 \\
{16}&4&1
\end{array}} \right)Now,wewillcomputethevalueofmatrix{P^2} = P \times P$as follows
{P^2} = \left( {\begin{array}{*{20}{c}} 1&0&0 \\\ 4&1&0 \\\ {16}&4&1 \end{array}} \right) \times \left( {\begin{array}{*{20}{c}} 1&0&0 \\\ 4&1&0 \\\ {16}&4&1 \end{array}} \right) \\\ \Rightarrow {P^2} = \left( {\begin{array}{*{20}{c}} 1&0&0 \\\ 8&1&0 \\\ {16 \times (1 + 2)}&8&1 \end{array}} \right) \\\Now, we will compute P3=P2×Pas follows
{P^3} = \left( {\begin{array}{*{20}{c}} 1&0&0 \\\ 8&1&0 \\\ {16 \times (1 + 2)}&8&1 \end{array}} \right) \times \left( {\begin{array}{*{20}{c}} 1&0&0 \\\ 4&1&0 \\\ {16}&4&1 \end{array}} \right) \\\ \Rightarrow {P^3} = \left( {\begin{array}{*{20}{c}} 1&0&0 \\\ {12}&1&0 \\\ {16 \times (1 + 2 + 3)}&{12}&1 \end{array}} \right) \\\Similarly we can compute other matrix with higher powers. So, we can see the pattern of the values of
matrix P with some power.
Thus we can conclude with the value of P50 as follows:
20400 - {q_{31}} = 0 \\
\Rightarrow {q_{31}} = 20400 \\