Solveeit Logo

Question

Mathematics Question on coordinates of a point in space

Let P(a1,b1)P\left(a_1, b_1\right) and Q(a2,b2)Q\left(a_2, b_2\right) be two distinct points on a circle with center C(2,3)C(\sqrt{2}, \sqrt{3}) Let OO be the origin and OCOC be perpendicular to both CPCP and CQCQ. If the area of the triangle OCPOCP is 352\frac{\sqrt{35}}{2}, then a12+a22+b12+b22a_1^2+a_2^2+b_1^2+b_2^2 is equal to ______

Answer

12×PC×5=352​​;PC=7\frac{1}{2}​×PC×\sqrt5​=\frac{\sqrt{35}}{2}​​;PC=\sqrt7​

 circle with center C

a12+b12+a22+b22=OP2+OQ2a^{2}_1​+b_{1}^2​+a^{2}_2​+b^{2}_2​=OP^2+OQ^2
=2(5+7)=24
So , the correct answer is 24.