Solveeit Logo

Question

Question: Let \(P\left( 3\sec \theta ,2\tan \theta \right)\) and \(Q\left( 3\sec \phi ,2\tan \phi \right)\) wh...

Let P(3secθ,2tanθ)P\left( 3\sec \theta ,2\tan \theta \right) and Q(3secϕ,2tanϕ)Q\left( 3\sec \phi ,2\tan \phi \right) where θ+ϕ=π2\theta +\phi =\dfrac{\pi }{2} , be two distinct points on the hyperbola x29y24=1\dfrac{{{x}^{2}}}{9}-\dfrac{{{y}^{2}}}{4}=1 . Then the ordinate of the point of intersection of the normals at P and Q is :-
A. 113\dfrac{11}{3},
B. 113-\dfrac{11}{3},
C. 132-\dfrac{13}{2},
D. 132\dfrac{13}{2}.

Explanation

Solution

For a hyperbola, x2a2y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1. The equation of the normal at the point A(x1,y1)A\left( {{x}_{1}},{{y}_{1}} \right) on it is a2xx1+b2yy1=a2+b2\dfrac{{{a}^{2}}x}{{{x}_{1}}}+\dfrac{{{b}^{2}}y}{{{y}_{1}}}={{a}^{2}}+{{b}^{2}}. We need to write the equation of normal at P as well as at Q on the given hyperbola. Then, we have to solve these two equations simultaneously to get the point of intersection.

Complete step by step answer:
Standard equation of a hyperbola is –
x2a2y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1……………………. (1)
We have given the equation of hyperbola is –
x29y24=1\dfrac{{{x}^{2}}}{9}-\dfrac{{{y}^{2}}}{4}=1…………………………. (2)

Comparing, the given equation of hyperbola with the standard equation of hyperbola:-
On comparing the coefficients of x2{{x}^{2}} and y2{{y}^{2}} in both equations (1) and (2), we get
a2=9{{a}^{2}}=9.
Taking positive square root,
a=3a=3.
And, b2=4{{b}^{2}}=4.
Taking positive square root,
b=2b=2.
Now, the equation of normal at point P is –
Putting, x1=3secθ{{x}_{1}}=3\sec \theta , y1=2tanθ{{y}_{1}}=2\tan \theta (in the equation of normal provided in the hint.)
We get,
a2x3secθ+b2y2tanθ=a2+b2\dfrac{{{a}^{2}}x}{3\sec \theta }+\dfrac{{{b}^{2}}y}{2\tan \theta }={{a}^{2}}+{{b}^{2}}.
Putting a=3a=3and b=2b=2 in the above equation
9x3secθ+4y2tanθ=13\Rightarrow \dfrac{9x}{3\sec \theta }+\dfrac{4y}{2\tan \theta }=13.
Since, cosθ=1secθ\cos \theta =\dfrac{1}{\sec \theta }.
And cotθ=1tanθ\cot \theta =\dfrac{1}{\tan \theta } .
The above equation can be written as –
3x(1secθ)+2y(1tanθ)=13\Rightarrow 3x\left( \dfrac{1}{\sec \theta } \right)+2y\left( \dfrac{1}{\tan \theta } \right)=13.
3x(cosθ)+2y(cotθ)=13\Rightarrow 3x\left( \cos \theta \right)+2y\left( \cot \theta \right)=13.
3cosθ.x+2cotθ.y=13\Rightarrow 3\cos \theta .x+2\cot \theta .y=13…………………… (3)
The equation of normal at point Q is –
Putting, x1=3secϕ{{x}_{1}}=3\sec \phi , y1=2tanϕ{{y}_{1}}=2\tan \phi (in the equation of normal provided in the hint.)
We get,
a2x3secϕ+b2y2tanϕ=1\dfrac{{{a}^{2}}x}{3\sec \phi }+\dfrac{{{b}^{2}}y}{2\tan \phi }=1.
Putting a=3a=3and b=2b=2 in the above equation
9x3secϕ+4y2tanϕ=1\Rightarrow \dfrac{9x}{3\sec \phi }+\dfrac{4y}{2\tan \phi }=1.
3x(1secϕ)+2y(1tanϕ)=1\Rightarrow 3x\left( \dfrac{1}{\sec \phi } \right)+2y\left( \dfrac{1}{\tan \phi } \right)=1.
We know that, 1secϕ=cosϕ\dfrac{1}{\sec \phi }=\cos \phi .
And 1tanϕ=cotϕ\dfrac{1}{\tan \phi }=\cot \phi .
The above equation can be written as –
3x(cosϕ)+2y(cotϕ)=1\Rightarrow 3x\left( \cos \phi \right)+2y\left( \cot \phi \right)=1.
3cosϕ.x+2cotϕ.y=1\Rightarrow 3\cos \phi .x+2\cot \phi .y=1
Now, it is given in the equation, θ+ϕ=π2\theta +\phi =\dfrac{\pi }{2}
ϕ=π2θ\therefore \phi =\dfrac{\pi }{2}-\theta .
Now, replacing ϕ\phi by π2θ\dfrac{\pi }{2}-\theta , we get –
3cos(π2θ)x+2cot(π2θ)y=13\Rightarrow 3\cos \left( \dfrac{\pi }{2}-\theta \right)x+2\cot \left( \dfrac{\pi }{2}-\theta \right)y=13.
3(sinθ)x+2(tanθ)y=13\Rightarrow 3\left( \sin \theta \right)x+2\left( \tan \theta \right)y=13.
3sinθ.x+2tanθ.y=13\Rightarrow 3\sin \theta .x+2\tan \theta .y=13…………………. (4)
Now, we have to solve equation (3) and (4) simultaneously to get the value of ordinate (i.e. y coordinate) from equation (3), we can write
3cosθ.x=132cotθ.y\Rightarrow 3\cos \theta .x=13-2\cot \theta .y.
x=1312cotθy3cosθ\Rightarrow x=\dfrac{13-12\cot \theta y}{3\cos \theta }………………. (5)
From equation (4) we can write
3sinθx=132tanθy\Rightarrow 3\sin \theta x=13-2\tan \theta y.
x=132tanθy3sinθ\Rightarrow x=\dfrac{13-2\tan \theta y}{3\sin \theta }…………………………. (6)
Equation (5) and (6) –
132ytanθ3sinθ=132ycotθ3sinθ\Rightarrow \dfrac{13-2y\tan \theta }{3\sin \theta }=\dfrac{13-2y\cot \theta }{3\sin \theta }.
132ytanθ=13tanθ2y\Rightarrow 13-2y\tan \theta =13\tan \theta -2y.
2y2ytanθ=13tanθ13\Rightarrow 2y-2y\tan \theta =13\tan \theta -13.
2y(1tanθ)=13(tanθ1)\Rightarrow 2y\left( 1-\tan \theta \right)=13\left( \tan \theta -1 \right).
2y=13\Rightarrow 2y=-13.
y=132\Rightarrow y=-\dfrac{13}{2}.
Hence, the ordinate (y-coordinate) is equal to 132-\dfrac{13}{2}.

Note:
In this question, the equation of normal in point form on the hyperbola is used. Students can make mistakes by taking a2{{a}^{2}} as 4 and b2{{b}^{2}} as 9 here. Be careful, while taking values of a2{{a}^{2}} and b2{{b}^{2}}. Note that the  (a2)~\left( {{a}^{2}} \right) always goes with the positive of x2{{x}^{2}} or y2{{y}^{2}} .
In the given equation, +x29y24=1\dfrac{+{{x}^{2}}}{9}-\dfrac{{{y}^{2}}}{4}=1.
Here, x2{{x}^{2}}is with a positive sign, hence it will give a2{{a}^{2}} as 9.