Question
Mathematics Question on Conic sections
Let P (3secθ,2tanθ) and Q (3secϕ,2tanϕ) where θ+ϕ=2π, be two distinct points on the hyperbola 9x2−4y2=1. Then the ordinate of the point of intersection of the normals at P and Q is :
A
311
B
3−11
C
213
D
2−13
Answer
2−13
Explanation
Solution
p(3secθ,2tanθ)Q=(3secϕ,2tanϕ)
θ+ϕ=2πQ=(3cosecθ,2cotθ)
Equation of normal at p=
=3xcosθ+2ycotθ=13
=3xsinθcosθ+2ycosθ=13sinθ...(1)
equation of normal at Q ⇒
=3xsinθ+2ytanθ=13
=3xsinθcosθ+2ysinθ=13cosθ...(2)
(1)−(2)⇒
2y(cosθ−sinθ)=13(sinθ−cosθ)
2y=−13⇒2−13