Solveeit Logo

Question

Mathematics Question on limits and derivatives

Let p=limx0+(1+tan2x)12xp = \displaystyle\lim_{x \to 0^+ } ( 1 + \tan^2 \sqrt{x} )^{\frac{1}{2x}} then logplog \,p is equal to

A

22

B

11

C

12\frac{1}{2}

D

14\frac{1}{4}

Answer

12\frac{1}{2}

Explanation

Solution

p = \displaystyle\lim_{x \to0^{+}} \left\\{ 1 + \tan^{2} \sqrt{x}\right\\}^{\frac{1}{\tan^{2} \sqrt{x}}\times\frac{\tan^{2}\sqrt{x}}{2x}}
=elimx0tan2x(x)2×12=e12= e^{\displaystyle\lim_{x\to0} \frac{\tan^{2}\sqrt{x}}{\left(\sqrt{x}\right)^{2}} \times \frac{1}{2}} = e^{\frac{1}{2}}
logep=12\log_{e} p = \frac{1}{2}