Solveeit Logo

Question

Question: Let *p* denotes the probability that a managed *x* years will die in a year. The probability that ou...

Let p denotes the probability that a managed x years will die in a year. The probability that out of n men each aged x, A1A _ { 1 } will die in a year and will be the first to die, is

A

1n[1(1p)n]\frac { 1 } { n } \left[ 1 - ( 1 - p ) ^ { n } \right]

B

[1(1p)n]\left[ 1 - ( 1 - p ) ^ { n } \right]

C

1n1[1(1p)n]\frac { 1 } { n - 1 } \left[ 1 - ( 1 - p ) ^ { n } \right]

D

None of these

Answer

1n[1(1p)n]\frac { 1 } { n } \left[ 1 - ( 1 - p ) ^ { n } \right]

Explanation

Solution

Let Ei denotes the event that Ai dies in a year.

Then P(Ei)=pP \left( E _ { i } \right) = p and P(Ei)=1pP \left( E _ { i } ^ { \prime } \right) = 1 - p for i = 1, 2, ….n

P (none of A1,A2,..A3A _ { 1 } , A _ { 2 } , \ldots . . A _ { 3 } dies in a year)

=P(E1E2..En)=P(E1)P(E2)P(En)=(1p)n= P \left( E _ { 1 } ^ { \prime } \cap E _ { 2 } ^ { \prime } \cap \ldots . . E _ { n } ^ { \prime } \right) = P \left( E _ { 1 } ^ { \prime } \right) P \left( E _ { 2 } ^ { \prime } \right) \ldots P \left( E _ { n } ^ { \prime } \right) = ( 1 - p ) ^ { n } ,

because are independent.

Let E denote the event that at least one of dies in a year.

Then

Let F denote the event that A1A _ { 1 } is the first to die.

Then P(F/E)=1nP ( F / E ) = \frac { 1 } { n } . Also, P(F)=P(E)P(F/E)=1n[1(1p)n]P ( F ) = P ( E ) \cdot P ( F / E ) = \frac { 1 } { n } \left[ 1 - ( 1 - p ) ^ { n } \right] .