Solveeit Logo

Question

Question: Let $P = \begin{bmatrix} 7 & 2 \\ 18 & -5 \end{bmatrix}$, then $P^{20}$ is-...

Let P=[72185]P = \begin{bmatrix} 7 & 2 \\ 18 & -5 \end{bmatrix}, then P20P^{20} is-

Answer

Without the options, providing a specific numerical or simplified form is difficult. The answer must be in terms of powers of the eigenvalues λ1=1+62\lambda_1 = 1 + 6\sqrt{2} and λ2=162\lambda_2 = 1 - 6\sqrt{2}.

The final answer is 162[(32+3)(1+62)20+(323)(162)20(1+62)20(162)209((1+62)20(162)20)(323)(1+62)20+(32+3)(162)20]\frac{1}{6\sqrt{2}} \begin{bmatrix} (3\sqrt{2} + 3)(1 + 6\sqrt{2})^{20} + (3\sqrt{2} - 3)(1 - 6\sqrt{2})^{20} & (1 + 6\sqrt{2})^{20} - (1 - 6\sqrt{2})^{20} \\ 9((1 + 6\sqrt{2})^{20} - (1 - 6\sqrt{2})^{20}) & (3\sqrt{2} - 3)(1 + 6\sqrt{2})^{20} + (3\sqrt{2} + 3)(1 - 6\sqrt{2})^{20} \end{bmatrix}.

Explanation

Solution

Explanation of the solution:

  1. Find the characteristic equation of the matrix PP.
  2. Use the Cayley-Hamilton theorem to express P2P^2 as a linear combination of PP and II.
  3. Establish recurrence relations for the coefficients an,bna_n, b_n in Pn=anP+bnIP^n = a_n P + b_n I.
  4. Solve the recurrence relation for ana_n using the eigenvalues of the characteristic equation.
  5. Find the expressions for a20a_{20} and b20=71a19b_{20} = 71a_{19} (or b20=λ120+λ2202a20b_{20} = \frac{\lambda_1^{20} + \lambda_2^{20}}{2} - a_{20}).
  6. Substitute a20a_{20} and b20b_{20} into the expression for P20=[7a20+b202a2018a205a20+b20]P^{20} = \begin{bmatrix} 7a_{20} + b_{20} & 2a_{20} \\ 18a_{20} & -5a_{20} + b_{20} \end{bmatrix}.

Alternatively, use diagonalization Pn=SDnS1P^n = S D^n S^{-1} to compute P20P^{20}.

The final answer is 162[(32+3)(1+62)20+(323)(162)20(1+62)20(162)209((1+62)20(162)20)(323)(1+62)20+(32+3)(162)20]\frac{1}{6\sqrt{2}} \begin{bmatrix} (3\sqrt{2} + 3)(1 + 6\sqrt{2})^{20} + (3\sqrt{2} - 3)(1 - 6\sqrt{2})^{20} & (1 + 6\sqrt{2})^{20} - (1 - 6\sqrt{2})^{20} \\ 9((1 + 6\sqrt{2})^{20} - (1 - 6\sqrt{2})^{20}) & (3\sqrt{2} - 3)(1 + 6\sqrt{2})^{20} + (3\sqrt{2} + 3)(1 - 6\sqrt{2})^{20} \end{bmatrix}.