Question
Question: Let $P = \begin{bmatrix} 7 & 2 \\ 18 & -5 \end{bmatrix}$, then $P^{20}$ is-...
Let P=[7182−5], then P20 is-

Answer
Without the options, providing a specific numerical or simplified form is difficult. The answer must be in terms of powers of the eigenvalues λ1=1+62 and λ2=1−62.
The final answer is 621[(32+3)(1+62)20+(32−3)(1−62)209((1+62)20−(1−62)20)(1+62)20−(1−62)20(32−3)(1+62)20+(32+3)(1−62)20].
Explanation
Solution
Explanation of the solution:
- Find the characteristic equation of the matrix P.
- Use the Cayley-Hamilton theorem to express P2 as a linear combination of P and I.
- Establish recurrence relations for the coefficients an,bn in Pn=anP+bnI.
- Solve the recurrence relation for an using the eigenvalues of the characteristic equation.
- Find the expressions for a20 and b20=71a19 (or b20=2λ120+λ220−a20).
- Substitute a20 and b20 into the expression for P20=[7a20+b2018a202a20−5a20+b20].
Alternatively, use diagonalization Pn=SDnS−1 to compute P20.
The final answer is 621[(32+3)(1+62)20+(32−3)(1−62)209((1+62)20−(1−62)20)(1+62)20−(1−62)20(32−3)(1+62)20+(32+3)(1−62)20].