Solveeit Logo

Question

Mathematics Question on Matrices

Let P=(cosπ4sinπ4 sinπ4cos;π4)P = \begin{pmatrix}cos \frac{\pi}{4}&-sin \frac{\pi}{4}\\\ sin \frac{\pi}{4}&cos; \frac{\pi}{4}\end{pmatrix} and X=(12 12)X = \begin{pmatrix}\frac{1}{\sqrt{2}}\\\ \frac{1}{\sqrt{2}}\end{pmatrix}. Then P3XP^{3}X is equal to

A

(01) \binom{0}{1}

B

(12 12)\begin{pmatrix}\frac{-1}{\sqrt{2}}\\\ \frac{1}{\sqrt{2}}\end{pmatrix}

C

(10) \binom{-1}{0}

D

(12 12)\begin{pmatrix}-\frac{1}{\sqrt{2}}\\\ -\frac{1}{\sqrt{2}}\end{pmatrix}

Answer

(10) \binom{-1}{0}

Explanation

Solution

Given, P=(cosπ4sinπ4 sinπ4cosπ4)=(1212 1212)P=\begin{pmatrix}\cos \frac{\pi}{4} & -\sin \frac{\pi}{4} \\\ \sin \frac{\pi}{4} & \cos \frac{\pi}{4}\end{pmatrix}=\begin{pmatrix}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{pmatrix} P=12(11 11)\Rightarrow P=\frac{1}{\sqrt{2}}\begin{pmatrix}1 & -1 \\\ 1 & 1\end{pmatrix} Now,  P2=PP=12(11 11)(11 11)\ P^{2} =P \cdot P=\frac{1}{2}\begin{pmatrix}1 & -1 \\\ 1 & 1\end{pmatrix}\begin{pmatrix}1 & -1 \\\ 1 & 1\end{pmatrix} =12(1111 1+11+1)=\frac{1}{2}\begin{pmatrix}1-1 & -1-1 \\\ 1+1 & -1+1\end{pmatrix} =12(02 20)=(01 10)=\frac{1}{2}\begin{pmatrix}0 & -2 \\\ 2 & 0\end{pmatrix}=\begin{pmatrix}0 & -1 \\\ 1 & 0\end{pmatrix} P3=PP2=12(11 11)(01 10)P^{3} =P \cdot P^{2}=\frac{1}{\sqrt{2}}\begin{pmatrix}1 & -1 \\\ 1 & 1\end{pmatrix} \cdot\begin{pmatrix}0 & -1 \\\ 1 & 0\end{pmatrix} =12(0110 0+11+0)=\frac{1}{\sqrt{2}}\begin{pmatrix}0-1 & -1-0 \\\ 0+1 & -1+0\end{pmatrix} =12(11 11)=\frac{1}{\sqrt{2}}\begin{pmatrix}-1 & -1 \\\ 1 & -1\end{pmatrix} Also, given X=(1/2 12)=12(1 1)X=\begin{pmatrix}1 / \sqrt{2} \\\ \frac{1}{\sqrt{2}}\end{pmatrix}=\frac{1}{\sqrt{2}}\begin{pmatrix}1 \\\ 1\end{pmatrix} P3X=12(11 11)12(1 1)\therefore P^{3} X =\frac{1}{\sqrt{2}}\begin{pmatrix}-1 & -1 \\\ 1 & -1\end{pmatrix} \cdot \frac{1}{\sqrt{2}}\begin{pmatrix}1 \\\ 1\end{pmatrix} =12(11 11)=12(2 0)=(1 0) =\frac{1}{2}\begin{pmatrix}-1-1 \\\ 1-1\end{pmatrix}=\frac{1}{2}\begin{pmatrix}-2 \\\ 0\end{pmatrix}=\begin{pmatrix}-1 \\\ 0\end{pmatrix}