Question
Mathematics Question on Matrices
Let P=(cos4π sin4π−sin4πcos;4π) and X=(21 21). Then P3X is equal to
A
(10)
B
(2−1 21)
C
(0−1)
D
(−21 −21)
Answer
(0−1)
Explanation
Solution
Given, P=(cos4π sin4π−sin4πcos4π)=(21 21−2121) ⇒P=21(1 1−11) Now, P2=P⋅P=21(1 1−11)(1 1−11) =21(1−1 1+1−1−1−1+1) =21(0 2−20)=(0 1−10) P3=P⋅P2=21(1 1−11)⋅(0 1−10) =21(0−1 0+1−1−0−1+0) =21(−1 1−1−1) Also, given X=(1/2 21)=21(1 1) ∴P3X=21(−1 1−1−1)⋅21(1 1) =21(−1−1 1−1)=21(−2 0)=(−1 0)