Solveeit Logo

Question

Question: Let p be the sum of all possible determinants of order 2 having 0, 1, 2 and 3 as their four elements...

Let p be the sum of all possible determinants of order 2 having 0, 1, 2 and 3 as their four elements. Then the common root a of the equations

x2 + ax + [m + 1] = 0

x2 + bx + [m + 4] = 0

x2 – cx + [m + 15] = 0

Such that a > p, where a + b + c = 0 and m =limn\lim_{n \rightarrow \infty}r=12nrn2+r2\sum_{r = 1}^{2n}\frac{r}{\sqrt{n^{2} + r^{2}}} .(where[.] denotes the greatest integer function)

A

± 3

B

3

C

–3

D

None of these

Answer

3

Explanation

Solution

Let a be the common root, then

a2 + aa + [m + 1] = 0 …(1)

a2 + ab + [m + 4] = 0 …(2)

a2 – ca + [m + 15] = 0 …(3)

Apply (1) + (2) – (3)

a2 + [m] – 10 = 0 …(4)

But m = limn\lim_{n \rightarrow \infty} 1n\frac { 1 } { \mathrm { n } } r=12nrn2+r2\sum_{r = 1}^{2n}\frac{r}{\sqrt{n^{2} + r^{2}}}=limn\lim_{n \rightarrow \infty} 1n\frac { 1 } { \mathrm { n } } r=12nr/n1+(rn)2\sum_{r = 1}^{2n}\frac{r/n}{\sqrt{1 + \left( \frac{r}{n} \right)^{2}}}

= 02x1+x2\int_{0}^{2}\frac{x}{\sqrt{1 + x^{2}}}dx = (1+x2)02\left( \sqrt{1 + x^{2}} \right)_{0}^{2}= 5\sqrt{5}– 1

Now [m] = [5\sqrt{5} – 1] = 1

Now from (4), a2 + 1 – 10 = 0 Ž a = ± 3 …(5)

Now number of determinants of order 2 having 0, 1, 2, 3 = 4! = 24. Let D1 = a1a2a3a4\left| \begin{matrix} a_{1} & a_{2} \\ a_{3} & a_{4} \end{matrix} \right|be one such determinant and there exists another determinant.

D2 = a3a4a1a2\left| \begin{matrix} a_{3} & a_{4} \\ a_{1} & a_{2} \end{matrix} \right| (obtained on interchanging R1 and R2)

such that D1 + D2 = 0.

p = sum of all the 24 determinants = 0

since a > p Ž a > 0

from (5), a = 3.

Hence (2) is the correct answer