Question
Mathematics Question on 3D Geometry
Let P be the point of intersection of the lines 1x−2=5y−4=1z−2and2x−3=3y−2=2z−3. Then, the shortest distance of P from the line 4x=2y=z is:
7514
714
7314
7614
7314
Solution
Find the point of intersection P:
Line L1:
1x−2=5y−4=1z−2=λ.
Parametric coordinates of P on L1:
x=λ+2,y=5λ+4,z=λ+2.
Line L2:
2x−3=3y−2=2z−3=μ.
Parametric coordinates of P on L2:
x=2μ+3,y=3μ+2,z=2μ+3.
Equate x,y,z for both lines:
λ+2=2μ+3⟹λ=2μ+1, 5λ+4=3μ+2⟹5(2μ+1)+4=3μ+2, 10μ+5+4=3μ+2⟹7μ=−7⟹μ=−1.
Substituting μ=−1:
λ=2(−1)+1=−1.
Coordinates of P:
P(1,−1,1).
Find the shortest distance from P to the line 4x=2y=z:
The equation of the line L3 in symmetric form is:
1/4x=1/2y=1z.
Let Q(k,2k,4k) be a point on L3. Direction ratios of PQ:
DRs of PQ=(k−1,2k+1,4k−1).
PQ⊥L3: Solve using:
(k−1)⋅41+(2k+1)⋅21+(4k−1)⋅1=0.
Simplify:
4k−1+44k+2+4k−1=0, 4k−1+44k+2+416k−4=0, 21k−3=0⟹k=71.
Coordinates of Q:
Q(71,72,74).
Calculate PQ:
PQ=(71−1)2+(72+1)2+(74−1)2.
Simplify:
PQ=(−76)2+(79)2+(−73)2. PQ=4936+4981+499=49126=736=7314.
Option (3) is correct.