Solveeit Logo

Question

Mathematics Question on 3D Geometry

Let PP be the point of intersection of the lines x21=y45=z21andx32=y23=z32.\frac{x - 2}{1} = \frac{y - 4}{5} = \frac{z - 2}{1} \quad \text{and} \quad \frac{x - 3}{2} = \frac{y - 2}{3} = \frac{z - 3}{2}. Then, the shortest distance of PP from the line 4x=2y=z4x = 2y = z is:

A

5147\frac{5\sqrt{14}}{7}

B

147\frac{\sqrt{14}}{7}

C

3147\frac{3\sqrt{14}}{7}

D

6147\frac{6\sqrt{14}}{7}

Answer

3147\frac{3\sqrt{14}}{7}

Explanation

Solution

Find the point of intersection PP:

Line L1L_1:

x21=y45=z21=λ.\frac{x - 2}{1} = \frac{y - 4}{5} = \frac{z - 2}{1} = \lambda.

Parametric coordinates of PP on L1L_1:

x=λ+2,y=5λ+4,z=λ+2.x = \lambda + 2, \quad y = 5\lambda + 4, \quad z = \lambda + 2.

Line L2L_2:

x32=y23=z32=μ.\frac{x - 3}{2} = \frac{y - 2}{3} = \frac{z - 3}{2} = \mu.

Parametric coordinates of PP on L2L_2:

x=2μ+3,y=3μ+2,z=2μ+3.x = 2\mu + 3, \quad y = 3\mu + 2, \quad z = 2\mu + 3.

Equate x,y,zx, y, z for both lines:

λ+2=2μ+3    λ=2μ+1,\lambda + 2 = 2\mu + 3 \implies \lambda = 2\mu + 1, 5λ+4=3μ+2    5(2μ+1)+4=3μ+2,5\lambda + 4 = 3\mu + 2 \implies 5(2\mu + 1) + 4 = 3\mu + 2, 10μ+5+4=3μ+2    7μ=7    μ=1.10\mu + 5 + 4 = 3\mu + 2 \implies 7\mu = -7 \implies \mu = -1.

Substituting μ=1\mu = -1:

λ=2(1)+1=1.\lambda = 2(-1) + 1 = -1.

Coordinates of PP:

P(1,1,1).P(1, -1, 1).

Find the shortest distance from PP to the line 4x=2y=z4x = 2y = z:

The equation of the line L3L_3 in symmetric form is:

x1/4=y1/2=z1.\frac{x}{1/4} = \frac{y}{1/2} = \frac{z}{1}.

Let Q(k,2k,4k)Q(k, 2k, 4k) be a point on L3L_3. Direction ratios of PQPQ:

DRs of PQ=(k1,2k+1,4k1).\text{DRs of } PQ = (k - 1, 2k + 1, 4k - 1).

PQL3PQ \perp L_3: Solve using:

(k1)14+(2k+1)12+(4k1)1=0.(k - 1)\cdot\frac{1}{4} + (2k + 1)\cdot\frac{1}{2} + (4k - 1)\cdot 1 = 0.

Simplify:

k14+4k+24+4k1=0,\frac{k - 1}{4} + \frac{4k + 2}{4} + 4k - 1 = 0, k14+4k+24+16k44=0,\frac{k - 1}{4} + \frac{4k + 2}{4} + \frac{16k - 4}{4} = 0, 21k3=0    k=17.21k - 3 = 0 \implies k = \frac{1}{7}.

Coordinates of QQ:

Q(17,27,47).Q\left(\frac{1}{7}, \frac{2}{7}, \frac{4}{7}\right).

Calculate PQPQ:

PQ=(171)2+(27+1)2+(471)2.PQ = \sqrt{\left(\frac{1}{7} - 1\right)^2 + \left(\frac{2}{7} + 1\right)^2 + \left(\frac{4}{7} - 1\right)^2}.

Simplify:

PQ=(67)2+(97)2+(37)2.PQ = \sqrt{\left(-\frac{6}{7}\right)^2 + \left(\frac{9}{7}\right)^2 + \left(-\frac{3}{7}\right)^2}. PQ=3649+8149+949=12649=367=3147.PQ = \sqrt{\frac{36}{49} + \frac{81}{49} + \frac{9}{49}} = \sqrt{\frac{126}{49}} = \sqrt{\frac{36}{7}} = \frac{3\sqrt{14}}{7}.

Option (3) is correct.