Solveeit Logo

Question

Mathematics Question on 3D Geometry

Let P be the point (10, –2, –1) and Q be the foot of the perpendicular drawn from the point R(1, 7, 6) on the line passing through the points (2, –5, 11) and (–6, 7, –5). Then the length of the line segment PQ is equal to ________.

Answer

The equation of the line passing through (2,5,11)(2, -5, 11) and (6,7,5)(-6, 7, -5) is:

x+68=y712=z+516=λ.\frac{x + 6}{-8} = \frac{y - 7}{12} = \frac{z + 5}{-16} = \lambda.

Using the parametric form of the line:

Q(λ)=(2λ6,73λ,4λ5).Q(\lambda) = (2\lambda - 6, 7 - 3\lambda, 4\lambda - 5).

The vector QRQR (from QQ to R(1,7,6)R(1, 7, 6)) is given as:

QR=(2λ7,3λ,4λ11).QR = (2\lambda - 7, -3\lambda, 4\lambda - 11).

Since QRQR is perpendicular to the line, the direction ratios (8,12,16)(-8, 12, -16) of the line satisfy:

8(2λ7)+12(3λ)+(16)(4λ11)=0.-8(2\lambda - 7) + 12(-3\lambda) + (-16)(4\lambda - 11) = 0.

Simplify:

16λ+5636λ64λ+176=0.-16\lambda + 56 - 36\lambda - 64\lambda + 176 = 0.

Combine terms:

116λ=232    λ=2.116\lambda = 232 \implies \lambda = 2.

Substitute λ=2\lambda = 2 in the parametric equation of the line:

Q(2)=(2(2)6,73(2),4(2)5)=(2,1,3).Q(2) = (2(2) - 6, 7 - 3(2), 4(2) - 5) = (-2, 1, 3).

The length of the segment PQPQ is:

PQ=(10(2))2+(21)2+(13)2.PQ = \sqrt{(10 - (-2))^2 + (-2 - 1)^2 + (-1 - 3)^2}.

Simplify:

PQ=(12)2+(3)2+(4)2=144+9+16=169.PQ = \sqrt{(12)^2 + (-3)^2 + (-4)^2} = \sqrt{144 + 9 + 16} = \sqrt{169}.

Thus: PQ=13.PQ = 13.