Solveeit Logo

Question

Question: Let P be the point (1, 0) and Q a point of the locus \(y^{2} = 8x\). The locus of mid point of PQ is...

Let P be the point (1, 0) and Q a point of the locus y2=8xy^{2} = 8x. The locus of mid point of PQ is.

A

x2+4y+2=0x^{2} + 4y + 2 = 0

B

x24y+2=0x ^ { 2 } - 4 y + 2 = 0

C

y24x+2=0y ^ { 2 } - 4 x + 2 = 0

D

y2+4x+2=0y ^ { 2 } + 4 x + 2 = 0

Answer

y24x+2=0y ^ { 2 } - 4 x + 2 = 0

Explanation

Solution

P=(1,0),Q=(h,k)P = ( 1,0 ) , Q = ( h , k ) such that k2=8hk ^ { 2 } = 8 h

Let (α,β)( \alpha , \beta ) be the midpoint of PQP Q ;

α=h+12,β=k+02;2α1=h,2β=k\alpha = \frac { h + 1 } { 2 } , \beta = \frac { k + 0 } { 2 } ; 2 \alpha - 1 = h , 2 \beta = k

(2β)2=8(2α1)β2=4α2y24x+2=0( 2 \beta ) ^ { 2 } = 8 ( 2 \alpha - 1 ) \Rightarrow \beta ^ { 2 } = 4 \alpha - 2 \Rightarrow y ^ { 2 } - 4 x + 2 = 0.