Solveeit Logo

Question

Mathematics Question on Angle between a Line and a Plane

Let P be the plane containing the straight linex39\frac{ x−3}{9}=y+41\frac{y+4}{-1}=z75\frac{z-7}{-5}and perpendicular to the plane containing the straight lines x2=y3=z5\frac{x}{2}=\frac{y}{3}=\frac{z}{5} and x3=y7=z8\frac{x}{3}=\frac{y}{7}=\frac{z}{8}.If d is the distance P from the point (2, –5, 11), then d 2 is equal to :

A

1472\frac{147}{2}

B

96

C

323\frac{32}{3}

D

54

Answer

323\frac{32}{3}

Explanation

Solution

Let <a , b , c > be direction ratios of plane containing lines
x2=y3=z5\frac{x}{2}=\frac{y}{3}=\frac{z}{5}
and
x3=y7=z8\frac{x}{3}=\frac{y}{7}=\frac{z}{8}.
∴ 2 a + 3 b + 5 c = 0 …(i)
and 3 a + 7 b + 8 c = 0 …(ii)
from eq. (i) and (ii)
a2435\frac{a}{24-35}=b1516\frac{b}{15-16}=c149\frac{c}{14-9}
∴ D.Rs. of plane are < 11, 1, –5>
Let D.RS of plane P be <a 1, b 1, c 1> then.
11 a 1 + b 1 – 5 c 1 = 0 …(iii)
and 9 a 1 – b 1 – 5 c 1 = 0 …(iv)
From eq. (iii) and (iv) :
a155\frac{a_1}{-5-5}=b145+55\frac{b_1}{-45+55}=c1119\frac{c_1}{-11-9}
∴ D.A5. of plane P are < 1, –1, 2>
Equation plane P is : 1(x – 3) –1(y + 4) +2(z –7) = 0
xy + 2 z – 21 = 0
Distance from point (2, –5, 11) is
d=2+5+2226\frac{|2+5+22−2|}{\sqrt6}
∴d2=323\frac{32}{3}