Solveeit Logo

Question

Mathematics Question on Conic sections

Let PP be the plane containing the straight line x39=y+41=z75\frac{x-3}{9}=\frac{y+4}{-1}=\frac{z-7}{-5} and perpendicular to the plane containing the straight lines x2=y3=z5\frac{ x }{2}=\frac{ y }{3}=\frac{ z }{5} and x3=y7=z8\frac{ x }{3}=\frac{ y }{7}=\frac{ z }{8} If dd is the distance of PP from the point (2,5,11)(2,-5,11), then d2d ^2 is equal to :

A

1472\frac{147}{2}

B

96

C

323\frac{32}{3}

D

54

Answer

323\frac{32}{3}

Explanation

Solution

The correct answer is option (C): 323\frac{32}{3}
a(x - 3)+b(y + 4)+c(z - 7) = 0
P : 9a - b -5c = 0
-11a - b + 5c = 0
After solving DR's ∝ (1, -1 , 2)
Equation of plane
x - y + 2z = 21
d=86d=\frac{8}{\sqrt6}
d2=322d^2=\frac{32}{2}