Solveeit Logo

Question

Mathematics Question on Hyperbola

Let P be the foot of the perpendicular from focus S of hyperbola x2a2y2b2=1\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 on the line bxay=0bx - ay = 0 and let CC be the centre of hyperbola. Then the area of the rectangle whose sides are equal to that of SPSP and CPCP is

A

2ab2ab

B

abab

C

(a2+b2)2\frac{\left(a^{2}+b^{2}\right)}{2}

D

ab\frac{a}{b}

Answer

abab

Explanation

Solution

Given, equation of hyperbola is
x2a62y2b2=1\frac{x^2}{a62} - \frac{y^2}{b^2} = 1

From figure,
SP=abeb2+a2S P =\left|\frac{a b e}{\sqrt{b^{2}+a^{2}}}\right|
=abeae=b=\left|\frac{a b e}{a e}\right|=b
and CS=aeC S=a e
Again, SPC\triangle S P C is right angled triangle at PP.
CP=CS2SP2\therefore C P =\sqrt{C S^{2}-S P^{2}}
=a2e2b2= \sqrt{a^{2} e^{2}-b^{2}}
=a2(1+b2a2)b2= \sqrt{a^{2}\left(1+\frac{b^{2}}{a^{2}}\right)-b^{2}}
=a2+b2b2=a=\sqrt{a^{2}+b^{2}-b^{2}}=a
\therefore Area of rectangle =CP×SP=C P \times S P
=ab=a b