Solveeit Logo

Question

Question: Let 'P' be any point inside the triangle OAB whose vertices are O(0, 0), A(3, 0) & B(3, 4). Symbol d...

Let 'P' be any point inside the triangle OAB whose vertices are O(0, 0), A(3, 0) & B(3, 4). Symbol d(P, AB) represents distance of point P from the side AB. If P satisfies d(P, OB) \le d(P, AB) and d(P, OB) \le d(P,OA), then number of integral points inside the region in which P lies, is (where a point is said to be an integral point whose both co-ordinates are integers)

Answer

3

Explanation

Solution

The vertices of the triangle OAB are O(0, 0), A(3, 0), and B(3, 4).

The equations of the sides are: OA: y = 0 OB: The line passing through O(0,0) and B(3,4). Slope = (4-0)/(3-0) = 4/3. Equation is y - 0 = (4/3)(x - 0), which is 4x - 3y = 0. AB: The line passing through A(3,0) and B(3,4). This is a vertical line with x-coordinate 3. Equation is x = 3.

A point P(x, y) is inside the triangle OAB if 0<x<30 < x < 3, y>0y > 0, and P is below the line OB. For a point below 4x - 3y = 0, 4x - 3y > 0.

The distance of P(x, y) from a line ax + by + c = 0 is given by ax+by+ca2+b2\frac{|ax + by + c|}{\sqrt{a^2 + b^2}}. d(P,OA)=d(P,y=0)=y02+12=yd(P, OA) = d(P, y=0) = \frac{|y|}{\sqrt{0^2+1^2}} = |y|. Since P is inside the triangle, y > 0, so d(P,OA)=yd(P, OA) = y. d(P,OB)=d(P,4x3y=0)=4x3y42+(3)2=4x3y5d(P, OB) = d(P, 4x-3y=0) = \frac{|4x-3y|}{\sqrt{4^2+(-3)^2}} = \frac{|4x-3y|}{5}. Since P is inside the triangle, 4x - 3y > 0, so d(P,OB)=4x3y5d(P, OB) = \frac{4x-3y}{5}. d(P,AB)=d(P,x=3)=d(P,x3=0)=x312+02=x3d(P, AB) = d(P, x=3) = d(P, x-3=0) = \frac{|x-3|}{\sqrt{1^2+0^2}} = |x-3|. Since P is inside the triangle, 0<x<30 < x < 3, so x - 3 < 0, thus d(P,AB)=(x3)=3xd(P, AB) = -(x-3) = 3-x.

The point P satisfies the conditions d(P,OB)d(P,AB)d(P, OB) \le d(P, AB) and d(P,OB)d(P,OA)d(P, OB) \le d(P, OA).

  1. 4x3y53x\frac{4x-3y}{5} \le 3-x 4x3y155x4x - 3y \le 15 - 5x 9x3y159x - 3y \le 15 3xy5    y3x53x - y \le 5 \implies y \ge 3x - 5.

  2. 4x3y5y\frac{4x-3y}{5} \le y 4x3y5y4x - 3y \le 5y 4x8y4x \le 8y x2y    yx/2x \le 2y \implies y \ge x/2.

So, P(x, y) must be an integral point (x, y are integers) satisfying: (i) 0<x<30 < x < 3 (from inside the triangle) (ii) y>0y > 0 (from inside the triangle) (iii) 4x3y>0    y<4x/34x - 3y > 0 \implies y < 4x/3 (from inside the triangle) (iv) y3x5y \ge 3x - 5 (v) yx/2y \ge x/2

Combining the conditions on y: max(ymin,ymin_triangle)y<ymax_triangle\max(y_{min}, y_{min\_triangle}) \le y < y_{max\_triangle}. The lower bound for y is max(0,x/2,3x5)\max(0, x/2, 3x-5). The upper bound for y is 4x/34x/3. So, we need integral points (x, y) such that: x{1,2}x \in \{1, 2\} (since x is an integer and 0<x<30 < x < 3) yy is an integer max(0,x/2,3x5)y<4x/3\max(0, x/2, 3x-5) \le y < 4x/3.

Case 1: x = 1 The conditions become: max(0,1/2,3(1)5)y<4(1)/3\max(0, 1/2, 3(1)-5) \le y < 4(1)/3 max(0,0.5,2)y<4/3\max(0, 0.5, -2) \le y < 4/3 0.5y<1.33...0.5 \le y < 1.33... The only integer value for y in this range is y = 1. For (1, 1): 0<1<30 < 1 < 3 (True) 1>01 > 0 (True) 4(1)3(1)=1>04(1) - 3(1) = 1 > 0 (True, inside triangle) 13(1)5    121 \ge 3(1) - 5 \implies 1 \ge -2 (True) 11/21 \ge 1/2 (True) So, (1, 1) is an integral point in the region.

Case 2: x = 2 The conditions become: max(0,2/2,3(2)5)y<4(2)/3\max(0, 2/2, 3(2)-5) \le y < 4(2)/3 max(0,1,1)y<8/3\max(0, 1, 1) \le y < 8/3 1y<2.66...1 \le y < 2.66... The integer values for y in this range are y = 1 and y = 2. Let's check these points: For (2, 1): 0<2<30 < 2 < 3 (True) 1>01 > 0 (True) 4(2)3(1)=83=5>04(2) - 3(1) = 8 - 3 = 5 > 0 (True, inside triangle) 13(2)5    111 \ge 3(2) - 5 \implies 1 \ge 1 (True) 12/2    111 \ge 2/2 \implies 1 \ge 1 (True) So, (2, 1) is an integral point in the region.

For (2, 2): 0<2<30 < 2 < 3 (True) 2>02 > 0 (True) 4(2)3(2)=86=2>04(2) - 3(2) = 8 - 6 = 2 > 0 (True, inside triangle) 23(2)5    212 \ge 3(2) - 5 \implies 2 \ge 1 (True) 22/2    212 \ge 2/2 \implies 2 \ge 1 (True) So, (2, 2) is an integral point in the region.

The integral points inside the region are (1, 1), (2, 1), and (2, 2). There are 3 such integral points.