Question
Question: Let P be a variable point on the ellipse \(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1\)with foci ...
Let P be a variable point on the ellipse a2x2+b2y2=1with foci F1and F2. If A is the area of the triangle PF1F2, then the maximum value of A is
A
2abe
B
abe
C
21abe
D
None of these
Answer
abe
Explanation
Solution
Let P(acosθ,bsinθ) and F1(−ae,0),F2(ae,0)
A=Area of ΔPF1F2 $= \frac{1}{2}\left| \begin{matrix} a\cos\theta & b\sin\theta & 1 \ ae & 0 & 1 \
- ae & 0 & 1 \end{matrix} \right| = \frac{1}{2}|2aeb\sin\theta|$
=aeb∣sinθ∣
∴ A is maximum, when ∣sinθ∣=1.
Hence, maximum value of A=abe