Solveeit Logo

Question

Question: Let P be a variable point on the ellipse \(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1\)with foci ...

Let P be a variable point on the ellipse x2a2+y2b2=1\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1with foci F1F_{1}and F2F_{2}. If A is the area of the triangle PF1F2,PF_{1}F_{2}, then the maximum value of A is

A

2abe2abe

B

abeabe

C

12abe\frac{1}{2}abe

D

None of these

Answer

abeabe

Explanation

Solution

Let P(acosθ,bsinθ)P(a\cos\theta,b\sin\theta) and F1(ae,0),F2(ae,0)\mathbf{F}_{\mathbf{1}}\mathbf{(}\mathbf{-}\mathbf{ae,0),}\mathbf{F}_{\mathbf{2}}\mathbf{(ae,0)}

A=\mathbf{A =}Area of ΔPF1F2\Delta PF_{1}F_{2} $= \frac{1}{2}\left| \begin{matrix} a\cos\theta & b\sin\theta & 1 \ ae & 0 & 1 \

  • ae & 0 & 1 \end{matrix} \right| = \frac{1}{2}|2aeb\sin\theta|$

=aebsinθ= aeb|\sin\theta|

∴ A is maximum, when sinθ=1|\sin\theta| = 1.

Hence, maximum value of A=abeA = abe