Solveeit Logo

Question

Question: Let P be a variable point on the ellipse \(\frac{x^{2}}{a^{2}}\)+ \(\frac{y^{2}}{b^{2}}\)= 1 with fo...

Let P be a variable point on the ellipse x2a2\frac{x^{2}}{a^{2}}+ y2b2\frac{y^{2}}{b^{2}}= 1 with foci S1 and S2. If A be the area

ofDPS1S2, then the maximum value of A:

A

ab sin q

B

abe

C

a sin q

D

b sin q

Answer

abe

Explanation

Solution

Let P (a cos q, b sin q) be the variable point on the ellipsex2a2\frac{x^{2}}{a^{2}}+ y2b2\frac{y^{2}}{b^{2}}= 1. Then,

A = Area of DPS1S2,

= 12\frac{1}{2} $\left| \begin{matrix} a\cos\theta & b\sin\theta & 1 \ ae & 0 & 1 \

  • ae & 0 & 1 \end{matrix} \right|== \frac{1}{2}$b sin q × 2 ae

= abe sin q

= Area = abe sin q, which is maximum

when q = π2\frac{\pi}{2}

\ Amax = abe