Question
Question: Let P be a variable point on the ellipse \(\frac{x^{2}}{a^{2}}\)+ \(\frac{y^{2}}{b^{2}}\)= 1 with fo...
Let P be a variable point on the ellipse a2x2+ b2y2= 1 with foci S1 and S2. If A be the area
ofDPS1S2, then the maximum value of A:
A
ab sin q
B
abe
C
a sin q
D
b sin q
Answer
abe
Explanation
Solution
Let P (a cos q, b sin q) be the variable point on the ellipsea2x2+ b2y2= 1. Then,
A = Area of DPS1S2,
= 21 $\left| \begin{matrix} a\cos\theta & b\sin\theta & 1 \ ae & 0 & 1 \
- ae & 0 & 1 \end{matrix} \right|=\frac{1}{2}$b sin q × 2 ae
= abe sin q
= Area = abe sin q, which is maximum
when q = 2π
\ Amax = abe