Solveeit Logo

Question

Question: Let $P$ be a square matrix such that $P^2=I-P$. For $\alpha$, $\beta$, $\gamma$, $\delta \in N$, if ...

Let PP be a square matrix such that P2=IPP^2=I-P. For α\alpha, β\beta, γ\gamma, δN\delta \in N, if Pα+Pβ+29P=γIP^\alpha+P^\beta+29P=\gamma I and Pα=Pβ+δI13PP^\alpha=P^\beta+\delta I -13P, then α+β+γδ5\frac{\alpha+\beta+\gamma-\delta}{5} is equal to

Answer

24/5

Explanation

Solution

The given condition is P2=IPP^2 = I - P. This can be rewritten as P2+PI=0P^2 + P - I = 0. We need to express higher powers of PP in the form aP+bIaP + bI.

P1=PP^1 = P

P2=IPP^2 = I - P

P3=PP2=P(IP)=PP2=P(IP)=2PIP^3 = P \cdot P^2 = P(I - P) = P - P^2 = P - (I - P) = 2P - I

P4=PP3=P(2PI)=2P2P=2(IP)P=2I2PP=2I3PP^4 = P \cdot P^3 = P(2P - I) = 2P^2 - P = 2(I - P) - P = 2I - 2P - P = 2I - 3P

P5=PP4=P(2I3P)=2P3P2=2P3(IP)=2P3I+3P=5P3IP^5 = P \cdot P^4 = P(2I - 3P) = 2P - 3P^2 = 2P - 3(I - P) = 2P - 3I + 3P = 5P - 3I

P6=PP5=P(5P3I)=5P23P=5(IP)3P=5I5P3P=5I8PP^6 = P \cdot P^5 = P(5P - 3I) = 5P^2 - 3P = 5(I - P) - 3P = 5I - 5P - 3P = 5I - 8P

We observe a pattern related to Fibonacci numbers FnF_n, where F0=0,F1=1,F2=1,F3=2,F4=3,F5=5,F6=8,F7=13,F8=21,F_0=0, F_1=1, F_2=1, F_3=2, F_4=3, F_5=5, F_6=8, F_7=13, F_8=21, \dots. The general form is Pn=(1)n+1FnP+(1)nFn1IP^n = (-1)^{n+1} F_n P + (-1)^n F_{n-1}I for n1n \ge 1.

We are given two equations:

  1. Pα+Pβ+29P=γI    Pα+Pβ=γI29PP^\alpha + P^\beta + 29P = \gamma I \implies P^\alpha + P^\beta = \gamma I - 29P
  2. Pα=Pβ+δI13P    PαPβ=δI13PP^\alpha = P^\beta + \delta I - 13P \implies P^\alpha - P^\beta = \delta I - 13P

Add equation (1) and equation (2):

(Pα+Pβ)+(PαPβ)=(γI29P)+(δI13P)(P^\alpha + P^\beta) + (P^\alpha - P^\beta) = (\gamma I - 29P) + (\delta I - 13P)

2Pα=(γ+δ)I42P2P^\alpha = (\gamma + \delta)I - 42P

Subtract equation (2) from equation (1):

(Pα+Pβ)(PαPβ)=(γI29P)(δI13P)(P^\alpha + P^\beta) - (P^\alpha - P^\beta) = (\gamma I - 29P) - (\delta I - 13P)

2Pβ=(γδ)I16P2P^\beta = (\gamma - \delta)I - 16P

Now, substitute the general form for PnP^n into these two derived equations.

For 2Pα=(γ+δ)I42P2P^\alpha = (\gamma + \delta)I - 42P:

2[(1)α+1FαP+(1)αFα1I]=42P+(γ+δ)I2 [(-1)^{\alpha+1} F_\alpha P + (-1)^\alpha F_{\alpha-1}I] = -42P + (\gamma + \delta)I

Comparing the coefficients of PP and II:

2(1)α+1Fα=42    (1)α+1Fα=212 (-1)^{\alpha+1} F_\alpha = -42 \implies (-1)^{\alpha+1} F_\alpha = -21

Since Fα>0F_\alpha > 0 for αN\alpha \in N, we must have (1)α+1=1(-1)^{\alpha+1} = -1, which implies α+1\alpha+1 is odd, so α\alpha is even.

Thus, Fα=21F_\alpha = 21. From the Fibonacci sequence, F8=21F_8 = 21, so α=8\alpha = 8. This is consistent with α\alpha being even.

Comparing coefficients of II:

2(1)αFα1=γ+δ2 (-1)^\alpha F_{\alpha-1} = \gamma + \delta

Since α=8\alpha = 8 (even), (1)α=1(-1)^\alpha = 1.

2F81=γ+δ    2F7=γ+δ2 F_{8-1} = \gamma + \delta \implies 2 F_7 = \gamma + \delta

2×13=γ+δ    γ+δ=262 \times 13 = \gamma + \delta \implies \gamma + \delta = 26. (Eq. A)

For 2Pβ=(γδ)I16P2P^\beta = (\gamma - \delta)I - 16P:

2[(1)β+1FβP+(1)βFβ1I]=16P+(γδ)I2 [(-1)^{\beta+1} F_\beta P + (-1)^\beta F_{\beta-1}I] = -16P + (\gamma - \delta)I

Comparing the coefficients of PP and II:

2(1)β+1Fβ=16    (1)β+1Fβ=82 (-1)^{\beta+1} F_\beta = -16 \implies (-1)^{\beta+1} F_\beta = -8

Since Fβ>0F_\beta > 0 for βN\beta \in N, we must have (1)β+1=1(-1)^{\beta+1} = -1, which implies β+1\beta+1 is odd, so β\beta is even.

Thus, Fβ=8F_\beta = 8. From the Fibonacci sequence, F6=8F_6 = 8, so β=6\beta = 6. This is consistent with β\beta being even.

Comparing coefficients of II:

2(1)βFβ1=γδ2 (-1)^\beta F_{\beta-1} = \gamma - \delta

Since β=6\beta = 6 (even), (1)β=1(-1)^\beta = 1.

2F61=γδ    2F5=γδ2 F_{6-1} = \gamma - \delta \implies 2 F_5 = \gamma - \delta

2×5=γδ    γδ=102 \times 5 = \gamma - \delta \implies \gamma - \delta = 10. (Eq. B)

Now we have a system of linear equations for γ\gamma and δ\delta:

(A) γ+δ=26\gamma + \delta = 26

(B) γδ=10\gamma - \delta = 10

Adding (A) and (B):

2γ=36    γ=182\gamma = 36 \implies \gamma = 18.

Subtracting (B) from (A):

2δ=16    δ=82\delta = 16 \implies \delta = 8.

We have found the values:

α=8\alpha = 8

β=6\beta = 6

γ=18\gamma = 18

δ=8\delta = 8

All values are natural numbers, as required.

Finally, we need to calculate α+β+γδ5\frac{\alpha+\beta+\gamma-\delta}{5}:

8+6+1885=14+1885=3285=245\frac{8+6+18-8}{5} = \frac{14+18-8}{5} = \frac{32-8}{5} = \frac{24}{5}.

The final answer is 245\boxed{\frac{24}{5}}.

Explanation of the solution:

  1. Derive the general form for PnP^n using the given P2=IPP^2=I-P relation. It is found to be Pn=(1)n+1FnP+(1)nFn1IP^n = (-1)^{n+1} F_n P + (-1)^n F_{n-1}I, where FnF_n are Fibonacci numbers (F0=0,F1=1,F_0=0, F_1=1, \dots).
  2. Manipulate the given equations Pα+Pβ+29P=γIP^\alpha+P^\beta+29P=\gamma I and Pα=Pβ+δI13PP^\alpha=P^\beta+\delta I -13P to get expressions for 2Pα2P^\alpha and 2Pβ2P^\beta in the form aP+bIaP+bI.
    • 2Pα=42P+(γ+δ)I2P^\alpha = -42P + (\gamma + \delta)I
    • 2Pβ=16P+(γδ)I2P^\beta = -16P + (\gamma - \delta)I
  3. Equate the coefficients of PP and II from the general form of PnP^n with the derived expressions for 2Pα2P^\alpha and 2Pβ2P^\beta.
  4. Solve for α\alpha and β\beta using the coefficient of PP. This involves identifying the correct Fibonacci number and checking the sign to determine parity.
    • Fα=21    α=8F_\alpha = 21 \implies \alpha = 8 (even)
    • Fβ=8    β=6F_\beta = 8 \implies \beta = 6 (even)
  5. Solve for γ\gamma and δ\delta using the coefficient of II.
    • γ+δ=2F7=2×13=26\gamma + \delta = 2F_7 = 2 \times 13 = 26
    • γδ=2F5=2×5=10\gamma - \delta = 2F_5 = 2 \times 5 = 10
    • Solving these gives γ=18,δ=8\gamma = 18, \delta = 8.
  6. Substitute the values of α,β,γ,δ\alpha, \beta, \gamma, \delta into the required expression α+β+γδ5\frac{\alpha+\beta+\gamma-\delta}{5}.
    • 8+6+1885=245\frac{8+6+18-8}{5} = \frac{24}{5}.