Solveeit Logo

Question

Question: Let P be a square matrix of order 4 such that, $16P^4 - 96P^3 + 216P^2 + 81I_4 = O$, and det(P) = 16...

Let P be a square matrix of order 4 such that, 16P496P3+216P2+81I4=O16P^4 - 96P^3 + 216P^2 + 81I_4 = O, and det(P) = 16 then which of following is/are true? (Where det(P) represent determinant value of matrix P, O is null matrix and P1P^{-1} represents inverse of matrix P and adj(P) represents Adjoint of matrix P)

A

det(adj(2I3P12I-3P^{-1})) = 363^6

B

adj(adjP) = 282^8P

C

adj(adj(adjP)) = 228P12^{28}P^{-1}

D

det(adj(2I3P12I-3P^{-1})) = ±39\pm 3^9

Answer

(B), (C), (D)

Explanation

Solution

Let the given matrix equation be

16P496P3+216P2+81I4=O16P^4 - 96P^3 + 216P^2 + 81I_4 = O

This equation can be rewritten as:

16P496P3+216P2+0P+81I=O16P^4 - 96P^3 + 216P^2 + 0P + 81I = O

Since det(P)=160\det(P) = 16 \neq 0, P is invertible, so P1P^{-1} exists.

From (2P3I)4=216P(2P - 3I)^4 = -216P, take the determinant:

det((2P3I)4)=det(216P)\det((2P - 3I)^4) = \det(-216P)

(det(2P3I))4=det(216IP)=det(216I)det(P)(\det(2P - 3I))^4 = \det(-216I \cdot P) = \det(-216I) \det(P)

(det(2P3I))4=(216)4det(P)(\det(2P - 3I))^4 = (-216)^4 \det(P) (since order is 4)

(det(2P3I))4=((23×33))4×16=(23×33)4×24=212×312×24=216×312(\det(2P - 3I))^4 = (-(2^3 \times 3^3))^4 \times 16 = (2^3 \times 3^3)^4 \times 2^4 = 2^{12} \times 3^{12} \times 2^4 = 2^{16} \times 3^{12}.

det(2P3I)=±(216×312)1/4=±24×33=±16×27=±432\det(2P - 3I) = \pm (2^{16} \times 3^{12})^{1/4} = \pm 2^4 \times 3^3 = \pm 16 \times 27 = \pm 432.

Let's consider the expression 2I3P12I - 3P^{-1}.

We need to find det(adj(2I3P1))=(det(2I3P1))3\det(\text{adj}(2I - 3P^{-1})) = (\det(2I - 3P^{-1}))^3.

Let A=2I3P1A = 2I - 3P^{-1}.

AP=(2I3P1)P=2P3IAP = (2I - 3P^{-1})P = 2P - 3I.

A=(2P3I)P1A = (2P - 3I)P^{-1}.

det(A)=det((2P3I)P1)=det(2P3I)det(P1)=det(2P3I)/det(P)\det(A) = \det((2P - 3I)P^{-1}) = \det(2P - 3I) \det(P^{-1}) = \det(2P - 3I) / \det(P).

We know det(P)=16\det(P) = 16. So det(A)=det(2P3I)/16\det(A) = \det(2P - 3I) / 16.

det(A)=det(2I3P1)=det(2P3I)/16=(±432)/16=±27\det(A) = \det(2I - 3P^{-1}) = \det(2P - 3I) / 16 = (\pm 432) / 16 = \pm 27.

Now, det(adj(2I3P1))=(det(2I3P1))3=(±27)3=(±33)3=±(33)3=±39\det(\text{adj}(2I - 3P^{-1})) = (\det(2I - 3P^{-1}))^3 = (\pm 27)^3 = (\pm 3^3)^3 = \pm (3^3)^3 = \pm 3^9.

So, option (D) det(adj(2I3P1))=±39\det(\text{adj}(2I-3P^{-1})) = \pm 3^9 is true.

(B) adj(adjP) = 282^8P.

For an n×nn \times n matrix P, adj(adjP) = (det(P))n2P(\det(P))^{n-2} P.

Here n=4n=4.

adj(adjP) = (det(P))42P=(det(P))2P(\det(P))^{4-2} P = (\det(P))^2 P.

Given det(P)=16\det(P) = 16.

adj(adjP) = (16)2P=(24)2P=28P(16)^2 P = (2^4)^2 P = 2^8 P.

So, option (B) adj(adjP) = 282^8P is true.

(C) adj(adj(adjP)) = 228P12^{28}P^{-1}.

Let Q=adj(adjP)Q = \text{adj}(\text{adjP}). We found Q=(det(P))2P=162PQ = (\det(P))^2 P = 16^2 P.

Now we need to find adj(Q) = adj(162P16^2 P).

adj(kMkM) = kn1k^{n-1} adj(M) for an n×nn \times n matrix M and scalar k.

Here k=162=(24)2=28k = 16^2 = (2^4)^2 = 2^8, M=PM=P, n=4n=4.

adj(162P16^2 P) = (162)41(16^2)^{4-1} adj(P) = (162)3(16^2)^3 adj(P) = 16616^6 adj(P).

We know that adj(P) = det(P)P1\det(P) P^{-1}.

adj(adj(adjP)) = 166(det(P)P1)=166(16P1)=167P116^6 (\det(P) P^{-1}) = 16^6 (16 P^{-1}) = 16^7 P^{-1}.

167=(24)7=22816^7 = (2^4)^7 = 2^{28}.

So, adj(adj(adjP)) = 228P12^{28}P^{-1}.

Option (C) adj(adj(adjP)) = 228P12^{28}P^{-1} is true.

The question asks which of the following is/are true. Options (B), (C), and (D) are true.