Solveeit Logo

Question

Question: Let P be a relation defined on the set of interval $(0, \frac{\pi}{2}]$ such that P ={(a, b) : $cose...

Let P be a relation defined on the set of interval (0,π2](0, \frac{\pi}{2}] such that P ={(a, b) : cosec2acot2bcosec^2a - cot^2b = 1}. Then P is

A

Reflexive and symmetric but not transitive

B

Reflexive and transitive but not symmetric

C

Symmetric and transitive but not reflexive

D

Equivalence relation

Answer

An equivalence relation

Explanation

Solution

We are given the relation

P={(a,b):csc2acot2b=1}P = \{(a,b) : \csc^2 a - \cot^2 b = 1\}

on the set (0,π2](0, \tfrac{\pi}{2}].

Step 1: Check Reflexivity

For (a,a)P(a,a) \in P, we have:

csc2acot2a=1\csc^2 a - \cot^2 a = 1

But using the identity csc2a=1+cot2a\csc^2 a = 1 + \cot^2 a, we get:

(1+cot2a)cot2a=1.(1 + \cot^2 a) - \cot^2 a = 1.

Thus, the relation is reflexive.

Step 2: Analyze the Given Equation

If (a,b)P(a,b) \in P, then

csc2acot2b=1csc2a=1+cot2b.\csc^2 a - \cot^2 b = 1 \quad \Longrightarrow \quad \csc^2 a = 1 + \cot^2 b.

But also by the trigonometric identity, we have for any aa:

csc2a=1+cot2a.\csc^2 a = 1 + \cot^2 a.

Comparing these,

1+cot2a=1+cot2bcot2a=cot2b.1 + \cot^2 a = 1 + \cot^2 b \quad \Longrightarrow \quad \cot^2 a = \cot^2 b.

Since a,b(0,π2]a, b \in (0, \tfrac{\pi}{2}], cot\cot is positive; hence,

cota=cotba=b.\cot a = \cot b \quad \Longrightarrow \quad a = b.

Step 3: Conclude the Relation Properties

The relation PP contains only pairs (a,b)(a,b) where a=ba = b. This means:

  • It is symmetric (if a=ba=b then automatically b=ab=a).
  • It is transitive (if a=ba=b and b=cb=c, then a=ca=c).

Thus, PP is an equivalence relation.