Solveeit Logo

Question

Question: Let 'P' be a point on x<sup>2</sup> = 4y that is nearest to the point A(0, 4) then co-ordinates of '...

Let 'P' be a point on x2 = 4y that is nearest to the point A(0, 4) then co-ordinates of 'P' are

A

(4, 4)

B

(0, 0)

C

(√8, 2)

D

(2, 1)

Answer

(√8, 2)

Explanation

Solution

In this case PA must be normal to the given curve. For

x2 = 4y, dydx=x2\frac { d y } { d x } = \frac { x } { 2 }. Thus equation of normal at P(x1,y1) is ;

(yx124)=2x1\left( y - \frac { x _ { 1 } ^ { 2 } } { 4 } \right) = - \frac { 2 } { x _ { 1 } }(x – x1).

It must pass through (0, 4)

(4x124)=2x1\left( 4 - \frac { x _ { 1 } ^ { 2 } } { 4 } \right) = \frac { 2 } { x _ { 1 } } x1 = 2

⇒ x1 =±8\pm \sqrt { 8 }. Apart from this y-axis is also a normal to the curve passing through A(0, 4) and corresponding x1 = 0.

If x1 = 0 ⇒ P(0, 0) ⇒ PA = 4

If x1 = ±8\pm \sqrt { 8 } ⇒ P(±8,2)( \pm \sqrt { 8 } , 2 )

⇒ PA = 8+4=12\sqrt { 8 + 4 } = \sqrt { 12 }

Thus p ≡ (±8,2)( \pm \sqrt { 8 } , 2 )